1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lora16 [44]
2 years ago
12

Find the area of the shape shown below.

Mathematics
2 answers:
omeli [17]2 years ago
8 0

Answer:

Find the product of (√2 + √5) (√7 - √5)

prohojiy [21]2 years ago
6 0
24 is the right answer
You might be interested in
1
user100 [1]

Answer:

This might be wrong but I think it is C

Step-by-step explanation:


8 0
3 years ago
Read 2 more answers
I need help with all of thies
levacccp [35]

Answer:

The equation for finding the hypotenuse is:

c^2+c^2=h^2

For example, in the first exercise:

8^2+10^2=164^2

For clearing the equation, find out the root of 164=

12.8

Hypotenuse of the first triangle is 12.8!

Let me help you with the next, if you still dont get it:

8^2+13^2=233^2

Root of 233: 15.2

Hypotenuse of second triangle is 15.2!

3 0
2 years ago
16. Write the inequality that is shown on the graph.
TiliK225 [7]

Answer: 5<x<9

Step-by-step explanation:

Graph is from 5 to 9, not including 5 and 9. Let's say x is all the values from 5 to 9, not including 5 and 9.

So, answer is 5<x<9

3 0
1 year ago
<img src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%2By%3D1%7D%20%5Catop%20%7Bx-2y%3D4%7D%7D%20%5Cright.%20%5C%5C%5Clef
brilliants [131]

Answer:

<em>(a) x=2, y=-1</em>

<em>(b)  x=2, y=2</em>

<em>(c)</em> \displaystyle x=\frac{5}{2}, y=\frac{5}{4}

<em>(d) x=-2, y=-7</em>

Step-by-step explanation:

<u>Cramer's Rule</u>

It's a predetermined sequence of steps to solve a system of equations. It's a preferred technique to be implemented in automatic digital solutions because it's easy to structure and generalize.

It uses the concept of determinants, as explained below. Suppose we have a 2x2 system of equations like:

\displaystyle \left \{ {{ax+by=p} \atop {cx+dy=q}} \right.

We call the determinant of the system

\Delta=\begin{vmatrix}a &b \\c  &d \end{vmatrix}

We also define:

\Delta_x=\begin{vmatrix}p &b \\q  &d \end{vmatrix}

And

\Delta_y=\begin{vmatrix}a &p \\c  &q \end{vmatrix}

The solution for x and y is

\displaystyle x=\frac{\Delta_x}{\Delta}

\displaystyle y=\frac{\Delta_y}{\Delta}

(a) The system to solve is

\displaystyle \left \{ {{x+y=1} \atop {x-2y=4}} \right.

Calculating:

\Delta=\begin{vmatrix}1 &1 \\1  &-2 \end{vmatrix}=-2-1=-3

\Delta_x=\begin{vmatrix}1 &1 \\4  &-2 \end{vmatrix}=-2-4=-6

\Delta_y=\begin{vmatrix}1 &1 \\1  &4 \end{vmatrix}=4-3=3

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{3}{-3}=-1

The solution is x=2, y=-1

(b) The system to solve is

\displaystyle \left \{ {{4x-y=6} \atop {x-y=0}} \right.

Calculating:

\Delta=\begin{vmatrix}4 &-1 \\1  &-1 \end{vmatrix}=-4+1=-3

\Delta_x=\begin{vmatrix}6 &-1 \\0  &-1 \end{vmatrix}=-6-0=-6

\Delta_y=\begin{vmatrix}4 &6 \\1  &0 \end{vmatrix}=0-6=-6

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-6}{-3}=2

The solution is x=2, y=2

(c) The system to solve is

\displaystyle \left \{ {{-x+2y=0} \atop {x+2y=5}} \right.

Calculating:

\Delta=\begin{vmatrix}-1 &2 \\1  &2 \end{vmatrix}=-2-2=-4

\Delta_x=\begin{vmatrix}0 &2 \\5  &2 \end{vmatrix}=0-10=-10

\Delta_y=\begin{vmatrix}-1 &0 \\1  &5 \end{vmatrix}=-5-0=-5

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-10}{-4}=\frac{5}{2}

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-5}{-4}=\frac{5}{4}

The solution is

\displaystyle x=\frac{5}{2}, y=\frac{5}{4}

(d) The system to solve is

\displaystyle \left \{ {{6x-y=-5} \atop {4x-2y=6}} \right.

Calculating:

\Delta=\begin{vmatrix}6 &-1 \\4  &-2 \end{vmatrix}=-12+4=-8

\Delta_x=\begin{vmatrix}-5 &-1 \\6  &-2 \end{vmatrix}=10+6=16

\Delta_y=\begin{vmatrix}6 &-5 \\4  &6 \end{vmatrix}=36+20=56

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{16}{-8}=-2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{56}{-8}=-7

The solution is x=-2, y=-7

4 0
3 years ago
Select the correct answer.<br> Which of these is not a key feature of the function
kkurt [141]

Answer:

what is the answer to this question?

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • 85 POINT QUESTION, WILL MARK BRAINLIEST.
    7·2 answers
  • Are you a NASA engineers President Kennedy's
    7·1 answer
  • Evaluate 2x-4y for x = 2 and y = 4. <br> 1/8<br> -64<br> 1/2
    5·2 answers
  • There are 200 seats on the Boeing 747 flight from Dallas to Houston. Assume that the number of passengers who buy tickets but do
    9·1 answer
  • I need the answers for 26
    7·2 answers
  • What is the factorization of the polynomial? (8x – 1)(7x – 1) (8x + 1)(7x – 1) (8x + 7x)(1 – 1)
    6·2 answers
  • Given: △ABC; AB=BC, m∠BDA = 60°, BD=4 cm, BD ⊥ BA . Find: DC, AC.
    6·1 answer
  • HIiiiiiiiiiiiiiiiiiiiiiiiii
    8·1 answer
  • Consider the following equations
    14·1 answer
  • HELPP MEE (this is 6th grade math btw))
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!