Answer: not sure what this question means but i assume three eighths or 0.375
Depends on context
Step-by-step explanation:
To calculate amount accrued after a given period of time we use the compound interest formula: A= P(1+r/100)∧n where A i the amount, P is the principal amount, r is the rate of interest and n is the interest period.
In the first part; A= $ 675.54, r= 1.25% (compounded semi-annually) and n =22 ( 11 years ), hence, 675.54 = P( 1.0125)∧22
= 675.54= 1.314P
P= $ 514.109 , therefore the principal amount was $ 514 (to nearest dollar)
Part 2
principal amount (p)= $ 541, rate (r) = 1.2 % (compounded twice a year thus rate for one half will be 2.4/2) and the interest period (n)= 34 (17 years×2)
Amount= 541 (1.012)∧34
= 541 ×1.5
= $ 811.5
Therefore, the account balance after $ 811.5.
Answer:
4:30
Explanation:
Three hours before 7:35 is 4:35, but you also have to subtract the extra 5 minutes to make it 4:30
The complex number -7i into trigonometric form is 7 (cos (90) + sin (90) i) and 3 + 3i in trigonometric form is 4.2426 (cos (45) + sin (45) i)
<h3>What is a complex number?</h3>
It is defined as the number which can be written as x+iy where x is the real number or real part of the complex number and y is the imaginary part of the complex number and i is the iota which is nothing but a square root of -1.
We have a complex number shown in the picture:
-7i(3 + 3i)
= -7i
In trigonometric form:
z = 7 (cos (90) + sin (90) i)
= 3 + 3i
z = 4.2426 (cos (45) + sin (45) i)




=21-21i
After converting into the exponential form:

From part (b) and part (c) both results are the same.
Thus, the complex number -7i into trigonometric form is 7 (cos (90) + sin (90) i) and 3 + 3i in trigonometric form is 4.2426 (cos (45) + sin (45) i)
Learn more about the complex number here:
brainly.com/question/10251853
#SPJ1