Answer:
m∠C=28°, m∠A=62°, AC=34.1 units
Step-by-step explanation:
Given In ΔABC, m∠B = 90°, , and AB = 16 units. we have to find m∠A, m∠C, and AC.
As, cos(C)={15}/{17}
⇒ angle C=cos^{-1}(\frac{15}{17})=28.07^{\circ}\sim28^{\circ}
By angle sum property of triangle,
m∠A+m∠B+m∠C=180°
⇒ m∠A+90°+28°=180°
⇒ m∠A=62°
Now, we have to find the length of AC
sin 28^{\circ}=\frac{AB}{AC}
⇒ AC=\frac{16}{sin 28^{\circ}}=34.1units
The length of AC is 34.1 units