0.05 * V1 = 250 * 10
<span> V1 = 2500 / 0.05 </span>
<span> V1 = 2500 * 20 </span>
<span> V1 = 50000 mL </span>
<span>V1 = 50 Liters .
Hope this helped! :3</span>
Answer:
Iodide> Bromide > chloride > flouride
Explanation:
During a nucleophilic substitution reaction, a nucleophilie replaces another in a molecule.
This process may occur via an ionic mechanism (SN1) or via a concerted mechanism (SN2).
In either case, the ease of departure of the leaving group is determined by the nature of the C-X bond. The stronger the C-X bond, the worse the leaving group will be in nucleophilic substitution. The order of strength of C-X bond is F>Cl>Br>I.
Hence, iodine displays the weakest C-X bond strength and it is thus, a very good leaving group in nucleophillic substitution while fluorine displays a very high C-X bond strength hence it is a bad leaving group in nucleophilic substitution.
Therefore, the ease of the use of halide ions as leaving groups follows the trend; Iodide> Bromide > chloride > flouride
The reaction equation is:
Li + Br → LiBr
39 grams of Li = 39 / 7 = 5.57 moles of lithium
41.5 grams of Br = 41.5 / 80 = 0.52 mole of bromine
Unsaturated hydrocarbons are those in which each carbon atom is attached to as many hydrogen atoms as it possibly can. There can be no double bonds or non-hydrogen functional groups, since these detract from the maximum possible number of hydrogens that each carbon can be attached to (in the case of double bonds, two carbons are bonded to each other when they could alternately be bonded to one more hydrogen each).
All of the alkanes (including the cycloalkanes) are saturated hydrocarbons. Substituted alkanes, alkenes, alkynes, and their cyclic counterparts are all unsaturated.