It is covalent bonding. The electrons are shared between the phosphorus and the chlorines.
covalent bonding is when electrons are shared between two elements.
molecular polarity is a little bit complicated, but I will try to explain ;)
PCl3 is an alternation on tetrahedral molecules.
It means that P has one lone pair of electrons. This pair of electrons are only attracted to the P nuclei and thus a greater freedom of motion.
This means that their orbital is bigger and this pushes the 3 Cl atoms closer together.
The angle between each Cl now is 107 and the angle between Cls and P is greater than 107.
Now, due to this shape, and also electronegativity (Cl is more electronegative than P meaning that it tends to hog the electrons they share closer to itself), PCl3 is polar. Electrons that are shared tend to flow closer towards the Cl than the P side.
Therefore, on the Cl side of the molecule it's, more negative. On the P side, it's more positive.
Answer:
a) Volume of vial= 9.626cm3
b) Mass of vial with water = 62.92 g
Explanation:
a) Mass of empty vial = 55.32 g
Mass of Vial + Hg = 185.56 g
Therefore,

Density of Hg = 13.53 g/cm3

b) Volume of water = volume of vial = 9.626 cm3
Density of water = 0.997 g/cm3

Answer:
The freezing point of the solution is - 4.39 °C.
Explanation:
We can solve this problem using the relation:
<em>ΔTf = (Kf)(m),</em>
where, ΔTf is the depression in the freezing point.
Kf is the molal freezing point depression constant of water = -1.86 °C/m,
density of water = 1 g/mL.
<em>So, the mass of 575 mL is 575 g = 0.575 kg.</em>
m is the molality of the solution (m = moles of solute / kg of solvent = (465 g / 342.3 g/mol)/(0.575 kg) = 2.36 m.
<em>∴ ΔTf = (Kf)(m</em>) = (-1.86 °C/m)(2.36 m) = <em>- 4.39 °C.</em>
<em>∵ The freezing point if water is 0.0 °C and it is depressed by - 4.39 °C.</em>
<em>∴ The freezing point of the solution is - 4.39 °C.</em>