Answer:
the answer is 5
Step-by-step explanation:
Step-by-step explanation:
5000:100=50
50×7,3=365
365×20=7,300$
Answer: 2/3 or .667
Step-by-step explanation:
Answer:
Step-by-step explanation:
Hello!
Your study variable is X: "number of ColorSmart-5000 that didn't need repairs after 5 years of use, in a sample of 390"
X~Bi (n;ρ)
ρ: population proportion of ColorSmart-5000 that didn't need repairs after 5 years of use. ρ = 0.95
n= 390
x= 303
sample proportion ^ρ: x/n = 303/390 = 0.776 ≅ 0.78
Applying the Central Limit Theorem you approximate the distribution of the sample proportion to normal to obtain the statistic to use.
You are asked to estimate the population proportion of televisions that didn't require repairs with a confidence interval, the formula is:
^ρ±
* √[(^ρ(1-^ρ))/n]
=
= 2.58
0.78±2.58* √[(0.78(1-0.78))/390]
0.0541
[0.726;0.834]
With a confidence level of 99% you'd expect that the interval [0.726;0.834] contains the true value of the proportion of ColorSmart-5000 that didn't need repairs after 5 years of use.
I hope it helps!
Three important properties of the diagonals of a rhombus that we need for this problem are:
1. the diagonals of a rhombus bisect each other
2. the diagonals form two perpendicular lines
3. the diagonals bisect the angles of the rhombus
First, we can let O be the point where the two diagonals intersect (as shown in the attached image). Using the properties listed above, we can conclude that ∠AOB is equal to 90° and ∠BAO = 60/2 = 30°.
Since a triangle's interior angles have a sum of 180°, then we have ∠ABO = 180 - 90 - 30 = 60°. This shows that the ΔAOB is a 30-60-90 triangle.
For a 30-60-90 triangle, the ratio of the sides facing the corresponding anges is 1:√3:2. So, since we know that AB = 10, we can compute for the rest of the sides.



Similarly, we have



Now, to find the lengths of the diagonals,


So, the lengths of the diagonals are 10 and 10√3.
Answer: 10 and 10√3 units