Specific heat is the amount of heat absorb or released by a substance to change the temperature to one degree Celsius. To determine the specific heat, we use the expression for the heat absorbed by the system. Heat gained or absorbed in a system can be calculated by multiplying the given mass to the specific heat capacity of the substance and the temperature difference. It is expressed as follows:
Heat = mC(T2-T1)
By substituting the given values, we can calculate for C which is the specific heat of the material.
2510 J = .158 kg ( 1000 g / 1 kg) (C) ( 61.0 - 32.0 °C)
C = 0.5478 J / g °C
Answer:
4-chloro-4-methyl-cyclohexene.
Explanation:
Hello,
On the attached picture you will find the chemical reaction forming the required product, 4-chloro-4-methyl-cyclohexene. In this case, according to the Markovnicov’s rule, it is more likely for the chlorine to be substituted at the carbon containing the methyl radical in addition to the hydrogen to the next carbon to break the double bond and yield the presented product.
Best regards.
Answer:the size of the atom increases is your answer have a great day
Explanation:
<span>Among important crop plants, nitrogen-fixing root nodules are most commonly an attribute of
B) legumes</span>
Answer:
92.26% of C
Explanation:
To solve this problem we must assume we have 1 mole of benzene. The mole contains 6 moles of C and 6 moles of H. We have to convert these moles to grams in order to find the total mass and mass percent will be:
Mass atom / Total mass * 100
<em>Mass C: </em>6mol C * (12.0107g / mol) = 72.0642g
<em>Mass H: </em>6mol H * (1.00794g / mol) = 6.04764g
<em>total mass: </em>72.0642g + 6.04764g = 78.11184g
Mass percent of C will be:
72.0642g C / 78.11184g* 100
<h3>92.26% of C</h3>