Answer:
I dont know your question
Explanation:
can you tell me more about your question then I could help!
Answer:
110 degree
Explanation:
This is because Hybridization of an s orbital with all three p orbitals (px , py, and pz) results in four sp3 hybrid orbitals. sp3 hybrid orbitals are oriented at bond angle of 109.5 degrees from each other. This 109.5 degrees gives an arrangement of tetrahedral geometry
Answer : Option A) 4.0 X 101
Explanation : As per the measurement chart the greatest metric system is measured in meters.
So the rest values are given in the form of metric values which are obviously less than that of meters. values of centimeters, decimeter and millimeters are less than that of meters.
Answer:
The specific heat of the metal is 2.09899 J/g℃.
Explanation:
Given,
For Metal sample,
mass = 13 grams
T = 73°C
For Water sample,
mass = 60 grams
T = 22°C.
When the metal sample and water sample are mixed,
The addition of metal increases the temperature of the water, as the metal is at higher temperature, and the addition of water decreases the temperature of metal. Therefore, heat lost by metal is equal to the heat gained by water.
Since, heat lost by metal is equal to the heat gained by water,
Qlost = Qgain
However,
Q = (mass) (ΔT) (Cp)
(mass) (ΔT) (Cp) = (mass) (ΔT) (Cp)
After mixing both samples, their temperature changes to 27°C.
It implies that
, water sample temperature changed from 22°C to 27°C and metal sample temperature changed from 73°C to 27°C.
Since, Specific heat of water = 4.184 J/g°C
Let Cp be the specific heat of the metal.
Substituting values,
(13)(73°C - 27°C)(Cp) = (60)(27°C - 22℃)(4.184)
By solving, we get Cp =
Therefore, specific heat of the metal sample is 2.09899 J/g℃.