If 1mole ------------- is ---------------- 6.02*10²³
than 0.25mole ----- is ---------------- x
x = [0.25mole*6.02*10²³]/1mole = <u>1,505*10²³</u>
Answer:

Explanation:
Hello there!
In this case, sine the solution of this problem require the application of the Raoult's law, assuming heptane is a nonvolatile solute, so we can write:

Thus, we first calculate the mole fraction of chloroform, by using the given masses and molar masses as shown below:

Therefore, the partial pressure of chloroform turns out to be:

Regards!
Answer:
713.51 N/m
Explanation:
Hook's Law: This law states that provided the elastic limit is not exceeded, the extension in an elastic material is directly proportional to the applied force.
From hook's law,
F = ke ...........................Equation 1
Where F = Force exerted on the bowstring, e = Extension/compression of the bowstring, k = Spring constant of the bow.
Make k the subject of the equation,
k = F/e ............................ Equation 2
Given: F = 264 N, e = 0.37 m.
Substitute into equation 2
k = 264/0.37
k = 713.51 N/m
Hence the spring constant of the bow = 713.51 N/m
Answer:
C5H12
Explanation:
In organic chemistry the boiling point of 309 k is of fifth member of alkane series which Pentane whose molecular mass is 72 g/mol. Thus, we can say that the molecular formula of the compound which has boiling point 309 K is C5H12.