The quotient of the synthetic division is x^3 + 3x^2 + 4
<h3>How to determine the quotient?</h3>
The bottom row of synthetic division given as:
1 3 0 4 0
The last digit represents the remainder, while the other represents the quotient.
So, we have:
Quotient = 1 3 0 4
Introduce the variables
Quotient = 1x^3 + 3x^2 + 0x + 4
Evaluate
Quotient = x^3 + 3x^2 + 4
Hence, the quotient of the synthetic division is x^3 + 3x^2 + 4
Read more about synthetic division at:
brainly.com/question/18788426
#SPJ1
15 because he scores 5 runs I n each of the 3 games he played so you do 5x3=15.
Answer:
(y - 4)(y + 4)
Step-by-step explanation:
y² - 16 ← is a difference of squares
Since y² and 16 are both squares separated by a difference , that is minus
A difference of squares factors as
y² - 16
= y² - 4²
= (y - 4)(y + 4)
Answer:
Se explanation
Step-by-step explanation:
The diagram shows the circle with center Q. In this circle, angle XAY is inscribed angle subtended on the arc XY. Angle XQY is the central angle subtended on the same arc XY.
The inscribed angle theorem states that an angle inscribed in a circle is half of the central angle that subtends the same arc on the circle. Therefore,

The measure of the intercepted arc XY is the measure of the central angle XQY and is equal to 144°.
All angles that have the same endpoints X and Y and vertex lying in the middle of the quadrilateral XAYQ have measures satisfying the condition

because angle XAY is the smallest possible angle subtended on the arc XY in the circle and angle XQY is the largest possible angle in the circle subtended on the arc XY.