I believe the answer is 16
Answer:
<em><u>An</u></em> equation is y = 2x + 4.
Step-by-step explanation:
<em><u>ANOTHER</u></em> equation is y - 2 = 2(x + 1)
Each can of green beans costs ($3.00/5) = 60¢ at the
village market, and ($6.10/10) = 61¢ at Sam's Club.
If you're watching every penny, then that MIGHT be enough
of a difference to make you decide to buy your beans at the
village market, but not necessarily.
If, say, the village market is farther away from you, or if there are
other things you're going to get from Sam's anyway, then you
should buy your beans there too.
Find an equation of the plane that contains the points p(5,−1,1),q(9,1,5),and r(8,−6,0)p(5,−1,1),q(9,1,5),and r(8,−6,0).
topjm [15]
Given plane passes through:
p(5,-1,1), q(9,1,5), r(8,-6,0)
We need to find a plane that is parallel to the plane through all three points, we form the vectors of any two sides of the triangle pqr:
pq=p-q=<5-9,-1-1,1-5>=<-4,-2,-4>
pr=p-r=<5-8,-1-6,1-0>=<-3,5,1>
The vector product pq x pr gives a vector perpendicular to both pq and pr. This vector is the normal vector of a plane passing through all three points
pq x pr
=
i j k
-4 -2 -4
-3 5 1
=<-2+20,12+4,-20-6>
=<18,16,-26>
Since the length of the normal vector does not change the direction, we simplify the normal vector as
N = <9,8,-13>
The required plane must pass through all three points.
We know that the normal vector is perpendicular to the plane through the three points, so we just need to make sure the plane passes through one of the three points, say q(9,1,5).
The equation of the required plane is therefore
Π : 9(x-9)+8(y-1)-13(z-5)=0
expand and simplify, we get the equation
Π : 9x+8y-13z=24
Check to see that the plane passes through all three points:
at p: 9(5)+8(-1)-13(1)=45-8-13=24
at q: 9(9)+8(1)-13(5)=81+9-65=24
at r: 9(8)+8(-6)-13(0)=72-48-0=24
So plane passes through all three points, as required.
Answer:
x=2,1 solving with quadratic formula
Step-by-step explanation: