<u>Given</u>:
The given ratio is 
We need to determine three ratios that are equivalent to the given ratio.
<u>Option A</u>: 
The given ratio is 
Let us divide the given ratio
by 2.
Thus, we have;

Hence, the expression
is equivalent to 
Thus, Option A is the correct answer.
<u>Option B</u>: 
The number 32 goes by 16 in 2 times and the number 24 goes by 12 in 2 times.
Thus, multiplying the ratio
by 2, we get;

Thus, the expression
is equivalent to 
Hence, Option B is the correct answer.
<u>Option C</u>: 
Let us divide the given ratio
by 4.
Thus, we have;

Thus, the expression
is equivalent to 
Hence, Option C is the correct answer.
<u>Option D</u>: 
The number 12 goes by 16 in
times and the number 8 goes by 12 in
times.
The ratios are multiplied by different numbers.
Thus, the expression
is not equivalent to 
Hence, Option D is not the correct answer.
<u>Option E</u>: 
The number 24 goes by 16 in 1.5 times and the number 16 goes by 12 in 0.75 times.
The ratios are multiplied by different numbers.
Thus, the expression
is not equivalent to 
Hence, Option E is not the correct answer.
Therefore, the equivalent ratios are Option A, B and C
X = large boxes and y = small boxes
x + y = 70.....x = 70 - y
60x + 65y = 4300
60(70 - y) + 65y = 4300
4200 - 60y + 65y = 4300
5y = 4300 - 4200
5y = 100
y = 100/5
y = 20 <=== the small boxes weigh 20 lbs
x + y = 70
x + 20 = 70
x = 70 - 20
x = 50 <== and the large boxes weigh 50 lbs
Answer:
x=148
Step-by-step explanation:
First, find the missing angle by subtracting 100+48 from 180 (all of the angles in a triangle add up to 180). Then, subtract that from 180 (the angles are a linear pair, so they are supplementry, so they add up to 180) x+32=180.
x=148.
(お役に立てれば!)
Hello,
I note (a,b,c) the result of a quarters, b dimes and c pennies:
2 solutions:
106=( 3, 3, 1)=( 1, 8, 1)
106=( 0, 0, 106) but : 100= 0*25+ 0*10+ 100
106=( 0, 1, 96) but : 100= 0*25+ 1*10+ 90
106=( 0, 2, 86) but : 100= 0*25+ 2*10+ 80
106=( 0, 3, 76) but : 100= 0*25+ 3*10+ 70
106=( 0, 4, 66) but : 100= 0*25+ 4*10+ 60
106=( 0, 5, 56) but : 100= 0*25+ 5*10+ 50
106=( 0, 6, 46) but : 100= 0*25+ 6*10+ 40
106=( 0, 7, 36) but : 100= 0*25+ 7*10+ 30
106=( 0, 8, 26) but : 100= 0*25+ 8*10+ 20
106=( 0, 9, 16) but : 100= 0*25+ 9*10+ 10
106=( 0, 10, 6) but : 100= 0*25+ 10*10+ 0
106=( 1, 0, 81) but : 100= 1*25+ 0*10+ 75
106=( 1, 1, 71) but : 100= 1*25+ 1*10+ 65
106=( 1, 2, 61) but : 100= 1*25+ 2*10+ 55
106=( 1, 3, 51) but : 100= 1*25+ 3*10+ 45
106=( 1, 4, 41) but : 100= 1*25+ 4*10+ 35
106=( 1, 5, 31) but : 100= 1*25+ 5*10+ 25
106=( 1, 6, 21) but : 100= 1*25+ 6*10+ 15
106=( 1, 7, 11) but : 100= 1*25+ 7*10+ 5
106=( 1, 8, 1) is good
106=( 2, 0, 56) but : 100= 2*25+ 0*10+ 50
106=( 2, 1, 46) but : 100= 2*25+ 1*10+ 40
106=( 2, 2, 36) but : 100= 2*25+ 2*10+ 30
106=( 2, 3, 26) but : 100= 2*25+ 3*10+ 20
106=( 2, 4, 16) but : 100= 2*25+ 4*10+ 10
106=( 2, 5, 6) but : 100= 2*25+ 5*10+ 0
106=( 3, 0, 31) but : 100= 3*25+ 0*10+ 25
106=( 3, 1, 21) but : 100= 3*25+ 1*10+ 15
106=( 3, 2, 11) but : 100= 3*25+ 2*10+ 5
106=( 3, 3, 1) is good
106=( 4, 0, 6) but : 100= 4*25+ 0*10+ 0