Thus L.H.S = R.H.S that is 2/√3cosx + sinx = sec(Π/6-x) is proved
We have to prove that
2/√3cosx + sinx = sec(Π/6-x)
To prove this we will solve the right-hand side of the equation which is
R.H.S = sec(Π/6-x)
= 1/cos(Π/6-x)
[As secƟ = 1/cosƟ)
= 1/[cos Π/6cosx + sin Π/6sinx]
[As cos (X-Y) = cosXcosY + sinXsinY , which is a trigonometry identity where X = Π/6 and Y = x]
= 1/[√3/2cosx + 1/2sinx]
= 1/(√3cosx + sinx]/2
= 2/√3cosx + sinx
R.H.S = L.H.S
Hence 2/√3cosx + sinx = sec(Π/6-x) is proved
Learn more about trigonometry here : brainly.com/question/7331447
#SPJ9
Length (2, 6) to (-4, 6) is sqrt((x2 - x1))^2 + (y2 - y1)^2) = sqrt((-4 -2)^2 + (6 - 6)^2) = sqrt((-6)^2 + 0) = 6
Length (2, 6) to (-4, 4) is sqrt((-4 - 2)^2 + (4 - 6)^2) = sqrt((-6)^2 + (-2)^2) = sqrt(36 + 4) = sqrt(40) = 2sqrt(10) units
Length (-4, 6) to (-4, 4) is sqrt((-4 - (-4))^2 + (4 - 6)^2) = sqrt(0^2 + (-2)^2) = 2
Therefore, the length of the longest side is 2sqrt(10) units
Answer:
8
Step-by-step explanation:
logic

The minimum and maximum temperatures in the house are 68.5°F and 76.5°.