Answer:
Elemental gold to have a Face-centered cubic structure.
Explanation:
From the information given:
Radius of gold = 144 pm
Its density = 19.32 g/cm³
Assuming the structure is a face-centered cubic structure, we can determine the density of the crystal by using the following:


a = 407 pm
In a unit cell, Volume (V) = a³
V = (407 pm)³
V = 6.74 × 10⁷ pm³
V = 6.74 × 10⁻²³ cm³
Recall that:
Net no. of an atom in an FCC unit cell = 4
Thus;


density d = 19.41 g/cm³
Similarly; For a body-centered cubic structure

where;
r = 144


a = 332.56 pm
In a unit cell, Volume V = a³
V = (332.56 pm)³
V = 3.68 × 10⁷ pm³
V 3.68 × 10⁻²³ cm³
Recall that:
Net no. of atoms in BCC cell = 2
∴


density =17.78 g/cm³
From the two calculate densities, we will realize that the density in the face-centered cubic structure is closer to the given density.
This makes the elemental gold to have a Face-centered cubic structure.
Answer:
S = 7.9 × 10⁻⁵ M
S' = 2.6 × 10⁻⁷ M
Explanation:
To calculate the solubility of CuBr in pure water (S) we will use an ICE Chart. We identify 3 stages (Initial-Change-Equilibrium) and complete each row with the concentration or change in concentration. Let's consider the solution of CuBr.
CuBr(s) ⇄ Cu⁺(aq) + Br⁻(aq)
I 0 0
C +S +S
E S S
The solubility product (Ksp) is:
Ksp = 6.27 × 10⁻⁹ = [Cu⁺].[Br⁻] = S²
S = 7.9 × 10⁻⁵ M
<u>Solubility in 0.0120 M CoBr₂ (S')</u>
First, we will consider the ionization of CoBr₂, a strong electrolyte.
CoBr₂(aq) → Co²⁺(aq) + 2 Br⁻(aq)
1 mole of CoBr₂ produces 2 moles of Br⁻. Then, the concentration of Br⁻ will be 2 × 0.0120 M = 0.0240 M.
Then,
CuBr(s) ⇄ Cu⁺(aq) + Br⁻(aq)
I 0 0.0240
C +S' +S'
E S' 0.0240 + S'
Ksp = 6.27 × 10⁻⁹ = [Cu⁺].[Br⁻] = S' . (0.0240 + S')
In the term (0.0240 + S'), S' is very small so we can neglect it to simplify the calculations.
S' = 2.6 × 10⁻⁷ M
Radiation is the heat that travels directly to the earth
Answer: A.mol/kg
The SI (international system) unit for molality is mol / kg, or solute moles per kg of peptides. A solution with a molality of 1 mol / kg is often described as "1 molal" or "1 m".