Two changes would make this reaction reactant-favored
C. Increasing the temperature
D. Reducing the pressure
<h3>Further explanation</h3>
Given
Reaction
2H₂ + O₂ ⇒ 2H₂0 + energy
Required
Two changes would make this reaction reactant-favored
Solution
The formation of H₂O is an exothermic reaction (releases heat)
If the system temperature is raised, then the equilibrium reaction will reduce the temperature by shifting the reaction in the direction that requires heat (endotherms). Conversely, if the temperature is lowered, then the equilibrium shifts to a reaction that releases heat (exothermic)
While on the change in pressure, then the addition of pressure, the reaction will shift towards a smaller reaction coefficient
in the above reaction: the number of coefficients on the left is 3 (2 + 1) while the right is 2
As the temperature rises, the equilibrium will shift towards the endothermic reaction, so the reaction shifts to the left towards H₂ + O₂( reactant-favored)
And reducing the pressure, then the reaction shifts to the left H₂ + O₂( reactant-favored)⇒the number of coefficients is greater
You need to look at the electronegativity and decide wheter the difference of both of the numbers are significant enough to form a polar bond
Explanation:
Decantation is a process for the separation of mixtures of immiscible liquids or of a liquid and a solid mixture such as a suspension.
Source: https://en.m.wikipedia.org/wiki/Decantation
The two oxygen atoms share two pairs of electrons, so two covalent bonds hold the oxygen molecule together
I think the correct answer among the choices listed above is option B. Silicon oxide is the solid that contains two types of bonds because you have Si-Si bonds and Si-O bonds. That is two different covalent bonds. Hope this answers your question.