To solve this problem it is necessary to apply the concepts related to Normal Force, frictional force, kinematic equations of motion and Newton's second law.
From the kinematic equations of motion we know that the relationship of acceleration, velocity and distance is given by

Where,
Final velocity
Initial Velocity
a = Acceleration
x = Displacement
Acceleration can be expressed in terms of the drag coefficient by means of
Frictional Force
Force by Newton's second Law
Where,
m = mass
a= acceleration
Kinetic frictional coefficient
g = Gravity
Equating both equation we have that



Therefore,


Re-arrange to find x,

The distance traveled by the car depends on the coefficient of kinetic friction, acceleration due to gravity and initial velocity, therefore the three cars will stop at the same distance.
The correct answer is The storage and management of radioactive wastes
Explanation:
In general, nuclear reactions (changes in the nucleus of an atom such as fission) release a lot of energy including a lot of heat. Moreover, this heat is used by humans to obtain electricity and other types of energy, which is known as a nuclear power. This type of power is considered positive because it does not emit carbon and it is quite efficient.
However, in most cases, it is a threat to the environment and living beings because storing and managing the wastes of this type of power is difficult and expensive. Indeed, dealing with the wastes of nuclear power requires complex infrastructure, and any accident or leaking leads to serious consequences from the death of those exposed to the wastes to permanent loss of diversity or changes in nearby areas.
Answer:
its a solid but can flow
Explanation:
those answers to choose from are wrong
The gravitational force on two objects can be determined by the following equation:

Where G is the gravitational constant m1 is mass 1, m2 is the second mass nad r^2 is distance between these objects. Therefore, let m1 = mass of Sun 1.99x10^30 kg, m2= mass of Jupiter 1.90x10^27 kg, r is the average distance between the Sun and Jupiter 7.78x10^11 m. By plugging these values in we have:


F=4.17x10^23 N
Answer:
its b
Explanation:
cause im in 7th grade ive been asked the same question