Answer:
(a) Friction force = 50 N
(b) Work done by friction = 300 j
(c) Net work done = 0 j
Explanation:
We have given that the box is pulled by 6 meter so d = 6 m
Force applied on the box F = 60 N
We have have given that velocity is constant so acceleration will be zero
So to applied force will be utilized in balancing the friction force
So friction force 
Work done by friction force 
Work done by applied force 
So net work done = 300-300 = 0 j
Explanation:
O Protons and neutrons grouped in a specific pattern
O Protons and electrons spread around randomly
Answer:
A) 37 m
Explanation:
The car is moving of uniformly accelerated motion, so the distance it covers can be calculated by using the following SUVAT equation:
(1)
where
v = 0 m/s is the final velocity of the car
u = 24 m/s is the initial velocity
a is the acceleration
d is the length of the skid
We need to find the acceleration first. We know that the force responsible for the (de)celeration is the force of friction, so:

where
m = 1000 kg is the mass of the car
is the coefficient of friction
a is the deceleration of the car
g = 9.8 m/s^2 is the acceleration due to gravity
The negative sign is due to the fact that the force of friction is against the motion of the car, so the sign of the acceleration will be negative because the car is slowing down. From this equation, we find:

And we can substitute it into eq.(1) to find d:

The variables which are involved in understanding Kepler's third law of
motion are
<h3 /><h3>What is Kepler's third law of motion?</h3>
Kepler's third law of motion states that the the square of the orbital period of
a planet is proportional to the cube of the semi-major axis of its orbit. He
also inferred that the greater the distance, the slower the orbital velocity.
This thereby makes option D the most appropriate option as it contains the
orbital velocity and distance to sun variables.
Read more about Kepler's third law of motion here brainly.com/question/777046
Answer:
We learned in the previous section that temperature is proportional to the average kinetic energy of atoms and molecules in a substance, and that the average internal kinetic energy of a substance is higher when the substance’s temperature is higher.
If two objects at different temperatures are brought in contact with each other, energy is transferred from the hotter object (that is, the object with the greater temperature) to the colder (lower temperature) object, until both objects are at the same temperature. There is no net heat transfer once the temperatures are equal because the amount of heat transferred from one object to the other is the same as the amount of heat returned. One of the major effects of heat transfer is temperature change: Heating increases the temperature while cooling decreases it. Experiments show that the heat transferred to or from a substance depends on three factors—the change in the substance’s temperature, the mass of the substance, and certain physical properties related to the phase of the substance.
The equation for heat transfer Q is
Q = mcΔT,
Explanation:
pls brainliest