Answer:
0.37sec
Explanation:
Period of oscillation of a simple pendulum of length L is:
T
=
2
π
×
√
(L
/g)
L=length of string 0.54m
g=acceleration due to gravity
T-period
T = 2 x 3.14 x √[0.54/9.8]
T = 1.47sec
An oscillating pendulum, or anything else in nature that involves "simple harmonic" (sinusoidal) motion, spends 1/4 of its period going from zero speed to maximum speed, and another 1/4 going from maximum speed to zero speed again, etc. After four quarter-periods it is back where it started.
The ball will first have V(max) at T/4,
=>V(max) = 1.47/4 = 0.37 sec
(C) the government agency that regulates these types of chemicals
¡Hellow!
For this problem, first, lets convert the seconds in hours:
5,4x10³
5400
h = sec / 3600
h = 5400 s / 3600
h = 1,5
Let's recabe information:
d (Distance) = 386 km
t (Time) = 1,5 h
v (Velocity) = ?
For calculate velocity, let's applicate formula:

Reeplace according we information:
386 km = v * 1,5 h
v = 386 km / 1,5 h
v = 257,33 km/h
The velocity of the train is of <u>257,33 kilometers for hour.</u>
<u></u>
Extra:
For convert km/h to m/s, we divide the velocity of km/h for 3,6:
m/s = km/h / 3,6
Let's reeplace:
m/s = 257,33 km/h / 3,6
m/s = 71,48
¿Good Luck?