Conservation of momentum: total momentum before = total momentum after
Momentum = mass x velocity
So before the collision:
4kg x 8m/s = 32
1kg x 0m/s = 0
32+0=32
Therefore after the collision
4kg x 4.8m/s = 19.2
1kg x βm/s = β
19.2 + β = 32
Therefore β = 12.8 m/s
Answer:
No, the magnitude of the magnetic field won't change.
Explanation:
The magnetic field produced by a wire with a constant current is circular and its flow is given by the right-hand rule. Since this field is circular with center on the wire the magnitude of the magnetic field around the wire will be given by B = [(\mi_0)*I]/(2\pi*r) where (\mi_0) is a constant, I is the current that goes through the conductor and r is the distance from the wire. If the field sensor will move around the wire with a fixed radius the distance from the wire won't change so the magnitude of the field won't change.
Time = distance / speed
Time = (4,800 meters) / (3 x 10⁸ m/s)
<em>Time = 0.000016 second</em>
This number is not one of the choices on the list. My hunch is that you copied the distance wrong.
If the estimated distance to the star is actually 4.8 x 10¹⁵ km, instead of 4.8 km, then the answer would be close to 500 years <em>(B)</em>.
There's no way a star can be "4.8 km away from the Earth". You can <em>walk</em> that far in about an hour, and passenger jet airplanes fly <em>twice</em> as far as that away from the Earth !
Since we are dividing a second in 2, we can simply divide the amount of meters by 2.
1500/2=750
It travels 750 meters in half a second.
Hope this helps!
I think it's D.................................