We can rearrange the mirror equation before plugging our values in.
1/p = 1/f - 1/q.
1/p = 1/10cm - 1/40cm
1/p = 4/40cm - 1/40cm = 3/40cm
40cm=3p <-- cross multiplication
13.33cm = p
Now that we have the value of p, we can plug it into the magnification equation.
M=-16/13.33=1.2
1.2=h'/8cm
9.6=h'
So the height of the image produced by the mirror is 9.6cm.
Kinetic energy is the energy possessed by a body while in motion. It is calculated by 1/2mv², where m is the mass of the body and v is the velocity.
Therefore, kinetic energy is dependent on both mass of the body and the velocity. An increase in mass increases the kinetic energy, an increase in velocity also increases kinetic energy of the body. Thus, doubling the mass and doubling the velocity will both increase the kinetic energy of the body.
Answer:
4.535 N.m
Explanation:
To solve this question, we're going to use the formula for moment of inertia
I = mL²/12
Where
I = moment of inertia
m = mass of the ladder, 7.98 kg
L = length of the ladder, 4.15 m
On solving we have
I = 7.98 * (4.15)² / 12
I = (7.98 * 17.2225) / 12
I = 137.44 / 12
I = 11.45 kg·m²
That is the moment of inertia about the center.
Using this moment of inertia, we multiply it by the angular acceleration to get the needed torque. So that
τ = 11.453 kg·m² * 0.395 rad/s²
τ = 4.535 N·m
A or possibly C because the other options have nothing to do with the size of the vibration. If i was you I would answer with A