True, p1/t1=p2/t2. Pressure is related to temperature at which it boils so pressure does affect the boiling point.
how does the electric force between two charged particles change if the distance between them is increased by a factor of 3?
a. it is reduced by a factor of 3
Answer:
w = 1.976 rpm
Explanation:
For simulate the gravity we will use the centripetal aceleration
, so:

where w is the angular aceleration and r the radius.
We know by the question that:
r = 60.5m
= 2.6m/s2
So, Replacing the data, and solving for w, we get:

W = 0.207 rad/s
Finally we change the angular velocity from rad/s to rpm as:
W = 0.207 rad/s = 0.207*60/(2
)= 1.976 rpm
Answer:
Abby is standing (4.5^2 + 2.3^2)^1/2 from the far speaker
D2 = 5.05 m from the far speaker
The difference in distances from the speakers is
5.05 - 4.5 = .55 m (Let y be wavelength, lambda)
n y = 4.5
(n + 1) y = 5.05 for the speakers to be in phase at smallest wavelength
y = .55 m subtracting equations
f = v / y = 340 / .55 = 618 / sec should be the smallest frequency
Answer:
d) I and III only.
Explanation:
Let be
and
the masses of the two laboratory carts and let suppose that
. The expressions for each kinetic energy are, respectively:
and
.
After some algebraic manipulation, the following relation is constructed:

Since
, then
. That is to say,
.
The expressions for each linear momentum are, respectively:
and 
Since
, then
. Which proves that statement I is true.
According to the Impulse Theorem, the impulse needed by cart I is greater than impulse needed by cart II, which proves that statement II is false.
According to the Work-Energy Theorem, both carts need the same amount of work to stop them. Which proves that statement III is true.