<h3><u>Answer</u> :</h3>
![\bigstar\:\boxed{\bf{\purple{x^{\frac{m}{n}}}=\orange{(\sqrt[n]{x})^m}}}](https://tex.z-dn.net/?f=%5Cbigstar%5C%3A%5Cboxed%7B%5Cbf%7B%5Cpurple%7Bx%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%7D%3D%5Corange%7B%28%5Csqrt%5Bn%5D%7Bx%7D%29%5Em%7D%7D%7D)
Let's solve !

![:\implies\sf\:(\sqrt[2]{25})^3](https://tex.z-dn.net/?f=%3A%5Cimplies%5Csf%5C%3A%28%5Csqrt%5B2%5D%7B25%7D%29%5E3)


<u>Hence, Oprion-D is correct</u> !
Answer:
Well The answer is: 9
Step-by-step explanation:
(2 3/8 + 11/4)=
(2 + 3) + (3/8 + 3/4)= 6 1/8
(6 1/8 + 2 7/8) =
(6 + 2) + (1/8 + 7/8) = 9
Pls give me brainliest i hope this helped
Who says V1=V2?
if we simplify we get
(2/3)pir₁³=12pir₂²
for V1 to equal V2
a.
solve for r₁ to find r₁ as a function of r₂
(2/3)pir₁³=12pir₂²
times 3/2 both sides and divide by pi
r₁³=18r₂²
cube root both sides
r₁=∛(18r₂²)
if solve for r₂
(2/3)pir₁³=12pir₂²
divide by 12pi both sides
(1/18)r₁³=r₂²
squer root both sides
√((1/18)r₁³)=r₂
double radius of pond which is r1
√((1/18)r₁³)=r₂
r₁ turns to 2r₁ to double radius
√((1/18)(2r₁)³)=r₂double
√(8(1/18)(r₁)³)=r₂double
(√8)(√((1/18)(r₁)³))=r₂double
√((1/18)r₁³)=r₂ so
(√8)(r₂)=r₂double
(2√2)(r₂)=r₂double
the radius of the tank is multipled by 2√2
Answer:
1) Are there 4 right angles? (90° angles)
2) Are there 2 sets of parallel lines?
3) Are there 2 sets of congruent lines?
4) Are there a set of congruent diagonals?
~