That is an annuity and use the attached formula.
Total = 300 * [(1.055)^11 -1] / .055 -300
Total = 300 *
<span>
<span>
<span>
1.8020924036
</span>
</span>
</span>
-1 /.055 -300
Total = 300 *
<span>.8020924036 / .055 - 300
</span>Total = 300 *
<span>
<span>
<span>
14.5834982473
</span>
</span>
</span>
-300
Total =
<span>
<span>
<span>
4375.0494741818
</span>
</span>
</span>
-300
Total =
<span>4075.05
</span>
A)
Let x represent the cost of 1 student, and y the cost of 1 teacher.
B)
In the first group, there's 25 students and 2 teachers. Their total cost is $97.50
So 25x + 2y = 97.50
In the second group, there's 32 students and 3 teachers. Their total cost is $127
So 32x + 3y = 127
We get the following system of equations:
25x + 2y = 97.50 (1)
32x + 3y = 127 (2)
C)
25x + 2y = 97.50 (1)
32x + 3y = 127 (2)
In equation (1)
25x + 2y = 97.50
25x + 2y - 2y = 97.50 - 2y
25x = 97.50 - 2y
25x / 25 = 97.50/25 - 2y/25
x = 3.9 - (2/25)y
In equation (2), let's replace x by its algebraic value
32x + 3y = 127
32(-2/25y + 3.9) + 3y = 127
11/25y + 124.8 = 127
11/25y + 124.8 - 124.8 = 127 - 124.8
11/25y = 2.2
(11/25y) / (11/25) = 2.2 / (11/25)
y = 5
x = -2/25y + 3.9
x = -2/25 * 5 + 3.9
x = 3.5
So the cost of each student is $3.5, and the cost of each teacher is $5.
Hope this helps! :)
1/4 or 4/8 or 5/10
:DDDDDDDDDDDDDDDDD
Your answer is C. Hope this help :D
Let the side of the garden alone (without walkway) be x.
Then the area of the garden alone is x^2.
The walkway is made up as follows:
1) four rectangles of width 2 feet and length x, and
2) four squares, each of area 2^2 square feet.
The total walkway area is thus x^2 + 4(2^2) + 4(x*2).
We want to find the dimensions of the garden. To do this, we need to find the value of x.
Let's sum up the garden dimensions and the walkway dimensions:
x^2 + 4(2^2) + 4(x*2) = 196 sq ft
x^2 + 16 + 8x = 196 sq ft
x^2 + 8x - 180 = 0
(x-10(x+18) = 0
x=10 or x=-18. We must discard x=-18, since the side length can't be negative. We are left with x = 10 feet.
The garden dimensions are (10 feet)^2, or 100 square feet.