Answer:
T2 = 133.333°K
Explanation:
Using Combined Gas Laws:
(600 torr)(10L)/500°K = (200 torr)(8L)/x°K

Cross multiply:
x°K (600 torr)(10L) = 500°K(200 torr)(8L)
Divide:
x°K = (500°K(200 torr)(8L))/(600 torr)(10L)

x = 400/3°K or 133.333°K
Answer: The reaction order with respect to A is m
Explanation:
Order of the reaction is defined as the sum of the concentration of terms on which the rate of the reaction actually depends. It is the sum of the exponents of the molar concentration in the rate law expression.
Elementary reactions are defined as the reactions for which the order of the reaction is same as its molecularity and order with respect to each reactant is equal to its stoichiometric coefficient as represented in the balanced chemical reaction.
For the given reaction:
![Rate=k[A]^m[B]^n](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5Em%5BB%5D%5En)
In this equation, the order with respect to each reactant is not equal to its stoichiometric coefficient which is represented in the balanced chemical reaction.
Hence, this is not considered as an elementary reaction.
Order with respect to A = m
Order with respect to B = n
Overall order = m+n
Thus order with respect to A is m.
Answer:
Solutions are always homogeneous.
Explanation:
Solution:
Solution are considered homogeneous because in solution the ratio of solute and solvent remain the same throughout the solution. Both solute and solvent are chemically combined and form a new substance.
In solution the particles of solute can not be seen through naked eye.
When the light is passed through the solution it can not scattered.
Example:
When salt is dissolve in water it makes a solution.
The solution also exist in gaseous form. For example oxygen and many other gases dissolved in nitrogen also form a solution.
Mixture:
In mixture substance are physically combined. In mixture every every individual particle retain their properties.
It can be consist of solid, liquid and gas.
Examples:
Sand in water is also a mixture.
Oil in water form mixture.
Explanation: In IUPAC, E-Z convention is given for describing the cis - trans notation to the isomers. According to CIP rule, the groups on the doubly bonded carbon atoms are given priorities based on the the atomic masses of first connected atom.
If the highest priority groups are on the same side, it is known as Z-form and if the highest priority groups are on opposite side, it is known as E-form.
We are given (Z)-3-bromo-6-methyl-2-heptene, in this the highest priority groups are bromine on one side and methyl- group on another side.
The structure is provided in the image below.
An example of a heterogeneous catalyst is a catalytic converter. A catalytic converter is an emissions control device that converts toxic pollutants in exhaust gas to less toxic pollutants by catalyzing a redox reaction (oxydation or reduction).