Answer:
(a) 
(b)


(c) 
Explanation:
Hello,
(a) In this case, with the given formula we easily compute the mass of gold contained in the sovereign as shown below:

(b) Now, by knowing the density of gold and copper, 19.32 and 8.94 g/cm³ respectively, we compute each volume, by also knowing that the rest of the coin contains copper:


(c) Finally, the volume is computed by dividing the total mass over the total volume containing both gold and copper:

Best regards.
A tornado! I think or it could be rain
Answer:
Present in both catabolic and anabolic pathways
Explanation:
Glyceraldehyde-3-phosphate abbreviated as G3P occurs as intermediate in glycolysis and gluconeogenesis.
In photosynthesis, it is produced by the light independent reaction and acts as carrier for returning ADP, phosphate ions Pi, and NADP+ to the light independent pathway. Photosynthesis is a anbolic pathway.
In glycolysis, Glyceraldehyde-3-phosphate is produced by breakdown of fructose-1,6 -bisphosphate. Further Glyceraldehyde-3-phosphate converted to pyruvate and pyruvate is further used in citric acid cycle for energy production. Therefore, it is used in catabolic pathway too.
Glyceraldehyde-3-phosphate is an important intermediate molecule in the cell's metabolic pathways because it is present in both catabolic and anabolic pathways.
D. Cell membrane: surrounds a cell and allows substances to pass in and out
First you calculate how many moles there are in 2.0 grams of hydrogen (H2) atoms.
Hydrogen has a relative atomic mass (RAM) of 1 g/mol, but there are 2 hydrogen atoms: 1 x 2 = 2 g/mol
To work out how many moles there are,
use the formula: n(moles) = mass ÷ molar mass
n(moles) = 2 grams ÷ 2 g/mol = 1 mol
Then use Avogadro's Constant : 6.023 x 10^23
= 1 x 6.023 x 10^23
= 6.023 x 10^23
Final step is to multiply it by the number of atoms, in this case there are 2.
= 6.023 x 10^23 x 2
= 12.046 x 10^23
= 1.205 x 10^24
that ^ should be your final answer
have a great day :)