Answer:
a. 192 m/s
b. -17,760 kPa
Explanation:
First let's write the flow rate of the liquid, using the following equation:
Q = A*v
Where Q is the flow rate, A is the cross section area of the pipe (A = pi * radius^2) and v is the speed of the liquid. The flow rate in both parts of the pipe (larger radius and smaller radius) needs to be the same, so we have:
a.
A1*v1 = A2*v2
pi * 0.02^2 * 12 = pi * 0.005^2 * v2
v2 = 0.02^2 * 12 / 0.005^2
v2 = 192 m/s
b.
To find the pressure of the other side, we need to use the Bernoulli equation: (600 kPa = 600000 N/m2)
P1 + d1*v1^2/2 = P2 + d1*v2^2/2
Where d1 is the density of the liquid (for water, we have d1 = 1000 kg/m3)
600000 + 1000*12^2/2 = P2 + 1000*192^2/2
P2 = 600000 + 72000 - 1000*192^2/2
P2 = -17760000 N/m2 = -17,760 kPa
The speed in the smaller part of the pipe is too high, the negative pressure in the second part means that the inicial pressure is not enough to maintain this output speed.
The maximum force of friction:
F = μ* N, where μ is the friction coefficient and N id the force of the doghouse normal to the surface.
N for a flat surface would be: N = m*g, where m is the mass and g is the gravitational acceleration = 9,81 m/s².
Combined:
F = μ * g * m
1h----------------> 70x3=210 bacteria
2h-----------------> 210*3=630 bactaeria
let be y the number of bacteria at the t=0h
it is y=70 3^0
for t= 1h
y=70*3^1=210
for t=2h
y=70*3^2=630
so we can write y=70*3^x, where x is the number of hour
The specific gravity is how the density of the object compares to the density of water. Water's density is 1gram per milliliter. We just need to figure out the density of the object.
The object is .8 kg and it displaces 500mL of water, so the density is the mass divided by the volume. Since the density of water is given in grams, we have to convert the objects mass from kg to g and then we can get the density.
.8kg * 1000g/kg = 800 grams
So
800g/500ml = 1.6grams/mL this is the density.
So divide the density of your object by the density of water, which is 1g/mL, you get 1.6 as the specific gravity. This means the object is 1.6 times more dense than water.
Complementary is essentially two things that are "combined" with one another (complement one another) to make a bigger piece or make it better.