Answer:
a. The electric field lines are linear and perpendicular to the plates inside a parallel-plate capacitor, and always from positive plate to the negative plate. If a positive charge is released near the positive plate, then it will follow a linear path towards the negative plate under the influence of electrostatic force, F = Eq, where q is the charge of the particle. The electric field inside a parallel plate capacitor is constant and equal to

This can be calculated by Gauss' Law.
A positive charge always follow the electric field lines when released. Another approach is that the positive plate repels the positive charge and negative plate attracts the positive charge. Therefore, the positive charge follows a path towards the negative charge.
b. The particle moves from the higher potential to the lower potential. The direction of motion is the same as the direction of the force that moves the particle, so the work done on the particle by that force is positive.
Answer:
α = 0
, w = w₀
Explanation:
Torque is related to angular acceleration by Newton's second law for rotational motion.
τ = I α
Where τ is the torque, I the moment of inertia and α the angular acceleration.
If we apply an external torque for the sum of all torques to be zero, the angular acceleration must fall to zero
α = 0
Since the acceleration is zero, the angular velocity you have at that time is constantly killed.
w = w₀ + α t
w = w₀ + 0
Answer: be found in group 17 and be highly reactive
Explanation:
Elements are distributed in groups and periods in a periodic table.
Elements that belong to same groups will show similar chemical properties because they have same number of valence electrons.
Flourine, chlorine, bromine and iodine are elements which belong to Group 17. All of them contain 7 valence electrons each and need one electron to complete their octet.
The chemical reactivity of elements is governed by the valence electrons present in the element and thus all of them are highly reactive.
Answer:
B. Iron is a good conductor of electricity because the metallic
bonds between its atoms allow electrons to move freely.
Explanation:
In order to answer this question, I realized that I needed to know the index
of refraction for ruby, so I went and looked it up. It's 1.762 to 1.770 .
I started trying to remember how to use this number and the critical angle
to find the index of refraction of the other medium. That's when I saw the
absurd unit "degrees celsius" for the critical angle, and I got discouraged.
But I perked up very quickly, when I realized that I'm still on the "index of
refraction" list, and while I'm there, I might as well just go ahead and
look up ethyl alcohol too.
It's 1.36 .