Answer:
I am pretty sure it is C
Explanation:
It can be found all over the universe
Answer:
7.9060 m²
8.57 Volts
5.142×10⁻⁶ Joule
1.2×10⁻⁶ Coulomb
Explanation:
C = Capacitance between plates = 0.14 μF = 0.14×10⁻⁶ F
d = Distance between plates = 0.5 mm = 0.5×10⁻³ m
Q = Charge = 1.2 μC = 1.2×10⁻⁶ C
ε₀ = Permittivity = 8.854×10⁻¹² F/m
Capacitance

∴ Area of each plate is 7.9060 m²
Voltage

∴ Potential difference between the plates if the capacitor is charged to 1.2 μC is 8.57 Volts.
Energy stored
E=0.5CV²
⇒E = 0.5×0.14×10⁻⁶×8.57²
⇒E = 5.142×10⁻⁶ Joule
∴ Stored energy is 5.142×10⁻⁶ Joule
Charge
Q = CV
⇒Q = 0.14×10⁻⁶×8.57
⇒Q = 1.2×10⁻⁶ C
∴ Charge the capacitor carries before a spark occurs between the two plates is 1.2×10⁻⁶ Coulomb
Answer:
94.13 ft/s
Explanation:
<u>Given:</u>
= time interval in which the rock hits the opponent = 10 s - 5 s = 5 s
= distance to be moved by the rock long the horizontal = 98 yards
= displacement to be moved by the rock during the time of flight along the vertical = 0 yard
<u>Assume:</u>
= magnitude of initial velocity of the rock
= angle of the initial velocity with the horizontal.
For the motion of the rock along the vertical during the time of flight, the rock has a constant acceleration in the vertically downward direction.

Now the rock has zero acceleration along the horizontal. This means it has a constant velocity along the horizontal during the time of flight.

On dividing equation (1) by (2), we have

Now, putting this value in equation (2), we have

Hence, the initial velocity of the rock must a magnitude of 94.13 ft/s to hit the opponent exactly at 98 yards.
Hello!
Use the formula:
W = Fd
Replacing:
W = 300 N * 300 m
Resolving:
W = 90000 J
The work is <u>90000 Joules.</u>
Answer:
962291.57928 m²
Explanation:
= Pressure =
(full reflection)
I = Intensity = 
P = Power = 
c = Speed of light = 
M = Mass of Sun = 
m = Mass of ship = 1500 kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
Force of radiation is given by

This force will balance the gravitational force as stated in the question

The area of the must be 962291.57928 m²