Get the derivative:
<em>y</em> = (9 - <em>x</em>²)¹ʹ³
d<em>y</em>/d<em>x</em> = 1/3 (9 - <em>x</em>²)⁻²ʹ³ d/d<em>x</em> [9 - <em>x</em>²]
d<em>y</em>/d<em>x</em> = 1/3 (9 - <em>x</em>²)⁻²ʹ³ (-2<em>x</em>)
d<em>y</em>/d<em>x</em> = -2/3 <em>x</em> (9 - <em>x</em>²)⁻²ʹ³
Evaluate it at <em>x</em> = 1 :
d<em>y</em>/d<em>x</em> (1) = -2/3 • 8⁻²ʹ³
Since 8 = 2³, we have
8⁻²ʹ³ = 1 / 8²ʹ³ = 1 / (2³)²ʹ³ = 1 / 2² = 1/4
Then the tangent line has equation
<em>y</em> - 2 = 1/4 (<em>x</em> - 1) → <em>y</em> = 1/4 <em>x</em> + 7/4
Answer:
<u>8</u>
Step-by-step explanation:
The given monomial is :
<u />
The degree of the monomial is the highest power to which a variable is raised to in the monomial. The greatest power in this case belongs to b⁸, which has a power of 8.
Hence, the degree of the monomial is <u>8</u>
Answer:
8% C = 4 1% C = 4 ÷ 8 =0.5 100% C = 0.5 × 100 = 50