Answer:288 pm
Explanation:
Number of atoms(s) for face centered unit cell -
Lattice points: at corners and face centers of unit cell.
For face centered cubic (FCC), z=4.
- whereas
For an FCC lattices √2a =4r =2d
Therefore d = a/√2a = 408pm/√2a= 288pm
I think with this step by step procedure the, the answer was clearly stated.
Answer:
105.70 mm
Explanation:
Poisson’s ratio, v is the ratio of lateral strain to axial strain.
E=2G(1+v) where E is Young’s modulus, v is poisson’s ratio and G is shear modulus
Since G is given as 25.4GPa, E is 65.5GPa, we substitute into our equation to obtain poisson’s ratio

Original length 

Where
is final diameter,
is original diameter,
is final length and
is original length.


Therefore, the original length is 105.70 mm
An ideal voltage source provides no energy when it is loaded by an open circuit (i.e. an infinite impedance), but approaches infinite energy and current when the load resistance approaches zero (a short circuit). ... An ideal current source has an infinite output impedance in parallel with the source.
Where you from?England has so many school subjects,but my country hasn’t got it.Do you like it
Answer:
M2 = 0.06404
P2 = 2.273
T2 = 5806.45°R
Explanation:
Given that p1 = 10atm, T1 = 1000R, M1 = 0.2.
Therefore from Steam Table, Po1 = (1.028)*(10) = 10.28 atm,
To1 = (1.008)*(1000) = 1008 ºR
R = 1716 ft-lb/slug-ºR cp= 6006 ft-lb/slug-ºR fuel-air ratio (by mass)
F/A =???? = FA slugf/slugaq = 4.5 x 108ft-lb/slugfx FA slugf/sluga = (4.5 x 108)FA ft-lb/sluga
For the air q = cp(To2– To1)
(Exit flow – inlet flow) – choked flow is assumed For M1= 0.2
Table A.3 of steam table gives P/P* = 2.273,
T/T* = 0.2066,
To/To* = 0.1736 To* = To2= To/0.1736 = 1008/0.1736 = 5806.45 ºR Gives q = cp(To* - To) = (6006 ft-lb/sluga-ºR)*(5806.45 – 1008)ºR = 28819500 ft-lb/slugaSetting equal to equation 1 above gives 28819500 ft-lb/sluga= FA*(4.5 x 108) ft-lb/slugaFA =
F/A = 0.06404 slugf/slugaor less to prevent choked flow at the exit