Answer:
Departure rate = 7.65 vehicle/min
Explanation:
See the attached file for the calculation.
Answer:
A) attached below
B) 743 KJ
C) 1.8983 KJ/K
Explanation:
A) Diagram of system schematic and set up states
attached below
<u>B) Calculate the amount of work received from the paddle wheel </u>
assuming ideal gas situation
v1 = v2 ( for a constant volume process )
work generated by paddle wheel = system internal energy
dw = mCv dT . where ; Cv = 0.743 KJ/kgk
= 5 * 0.743 * ( 500 - 300 )
= 3.715 * 200 = 743 KJ
<u>C) calculate the amount of entropy generated ( KJ/K )</u>
S2 - S1 = 1.8983 KJ/K
attached below is the detailed solution
The option that is not an assumption for the Method of Joints is that
- The truss is stable
- Members are straight
- Members are weightless
<h3>
What is an assumption?</h3>
This is known to be people's believe in regard to a thing that is said to be true or maybe probably true.
Note that The option that is not an assumption for the Method of Joints is that
- The truss is stable
- Members are straight
- Members are weightless
Learn more about assumption from
brainly.com/question/2875871
#SPJ1
Answer:
flow ( m ) = 4.852 kg/s
Explanation:
Given:
- Inlet of Turbine
P_1 = 10 MPa
T_1 = 500 C
- Outlet of Turbine
P_2 = 10 KPa
x = 0.9
- Power output of Turbine W_out = 5 MW
Find:
Determine the mass ow rate required
Solution:
- Use steam Table A.4 to determine specific enthalpy for inlet conditions:
P_1 = 10 MPa
T_1 = 500 C ---------- > h_1 = 3375.1 KJ/kg
- Use steam Table A.6 to determine specific enthalpy for outlet conditions:
P_2 = 10 KPa -------------> h_f = 191.81 KJ/kg
x = 0.9 -------------> h_fg = 2392.1 KJ/kg
h_2 = h_f + x*h_fg
h_2 = 191.81 + 0.9*2392.1 = 2344.7 KJ/kg
- The work produced by the turbine W_out is given by first Law of thermodynamics:
W_out = flow(m) * ( h_1 - h_2 )
flow ( m ) = W_out / ( h_1 - h_2 )
- Plug in values:
flow ( m ) = 5*10^3 / ( 3375.1 - 2344.7 )
flow ( m ) = 4.852 kg/s