Given:
15. ![\log_{\frac{1}{2}}\left(\dfrac{1}{2}\right)](https://tex.z-dn.net/?f=%5Clog_%7B%5Cfrac%7B1%7D%7B2%7D%7D%5Cleft%28%5Cdfrac%7B1%7D%7B2%7D%5Cright%29)
17. ![\log_{\frac{3}{4}}\left(\dfrac{4}{3}\right)](https://tex.z-dn.net/?f=%5Clog_%7B%5Cfrac%7B3%7D%7B4%7D%7D%5Cleft%28%5Cdfrac%7B4%7D%7B3%7D%5Cright%29)
19. ![2^{\log_2100}](https://tex.z-dn.net/?f=2%5E%7B%5Clog_2100%7D)
To find:
The values of the given logarithms by using the properties of logarithms.
Solution:
15. We have,
![\log_{\frac{1}{2}}\left(\dfrac{1}{2}\right)](https://tex.z-dn.net/?f=%5Clog_%7B%5Cfrac%7B1%7D%7B2%7D%7D%5Cleft%28%5Cdfrac%7B1%7D%7B2%7D%5Cright%29)
Using property of logarithms, we get
![[\because \log_aa=1]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Clog_aa%3D1%5D)
Therefore, the value of
is 1.
17. We have,
![\log_{\frac{3}{4}}\left(\dfrac{4}{3}\right)](https://tex.z-dn.net/?f=%5Clog_%7B%5Cfrac%7B3%7D%7B4%7D%7D%5Cleft%28%5Cdfrac%7B4%7D%7B3%7D%5Cright%29)
Using properties of logarithms, we get
![[\because \log_a\dfrac{m}{n}=-\log_a\dfrac{n}{m}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Clog_a%5Cdfrac%7Bm%7D%7Bn%7D%3D-%5Clog_a%5Cdfrac%7Bn%7D%7Bm%7D%5D)
![[\because \log_aa=1]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Clog_aa%3D1%5D)
Therefore, the value of
is -1.
19. We have,
![2^{\log_2100}](https://tex.z-dn.net/?f=2%5E%7B%5Clog_2100%7D)
Using property of logarithms, we get
![[\because a^{\log_ax}=x]](https://tex.z-dn.net/?f=%5B%5Cbecause%20a%5E%7B%5Clog_ax%7D%3Dx%5D)
Therefore, the value of
is 100.