Answer:
x = ±i(√6 / 2)
General Formulas and Concepts:
<u>Pre-Algebra</u>
<u>Algebra I</u>
<u>Algebra II</u>
Imaginary root i
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
2x² + 3 = 0
<u>Step 2: Solve for </u><em><u>x</u></em>
- [Subtraction Property of Equality] Subtract 3 on both sides: 2x² = -3
- [Division Property of Equality] Divide 2 on both sides: x² = -3/2
- [Equality Property] Square root both sides: x = ±√(-3/2)
- Simplify: x = ±i(√6 / 2)
Answer:
The objective of the problem is obtained below:
From the information, an urn consists of, 4 black, 2 orange balls and 8 white.
The person loses $1 for each white ball selected, no money is lost or gained for any orange balls picked and win $2 for each black ball selected. Let the random variable X denotes the winnings.
No winnings probability= 0.011
Probability of winning $1=0.3516
Probability of winning $2= 0.0879
Probability of winning $4= 0.0659
3 because the x value has been repeated
The first shopping mall was the Country Club Plaza<span>, founded by the J.C. Nichols Company and opened near Kansas City, Mo., in 1922</span>
Here, we want to check for the relationship between the image and its pre-image
The pre-image is (x,y)
The image is (3x,3y+5)
As we can see, the pre-image is not similar
This is because the transformation applied to the two values are not same
Thus, we have that;
No, the image is not similar to the pre-image as the translations applied to both coordinates are not same
The pre-image was transformed by dilating the x-coordinate of the pre-image by 3 units while the y-coordinate was transformed by dilating the y-coordinate of the pre-image by 3 and translating it upward by 5 units