Answer: a) io=233.28 A ( initial current); b) τ=R*C= 22.31 ms; c) 81.7 ms
Explanation: In order to explain this problem we have to use, the formule for the variation of the current in a RC circuit:
I(t)=io*Exp(-t/τ)
and also we consider that io=V/R=(1.5/6.43*10^3)
=233.28 A
then the time constant for the RC circuit is τ=R*C=6.43*10^3*3.47*10^-6
=22.31 ms
Finally the time to reduce the current to 2.57% of its initial value is obtained from:
I(t)=io*Exp(-t/τ) for I(t)/io=0.0257=Exp(-t/τ) then
ln(0.0257)*τ =-t
t=-ln(0.0257)*τ=81.68 ms
Answer:
1170 m
Explanation:
Given:
a = 3.30 m/s²
v₀ = 0 m/s
v = 88.0 m/s
x₀ = 0 m
Find:
x
v² = v₀² + 2a(x - x₀)
(88.0 m/s)² = (0 m/s)² + 2 (3.30 m/s²) (x - 0 m)
x = 1173.33 m
Rounded to 3 sig-figs, the runway must be at least 1170 meters long.
If the container explodes there is no pressure, becuase all your gas has escaped its container, there for, you ain’t got no gas
Answer:
the energy difference between adjacent levels decreases as the quantum number increases
Explanation:
The energy levels of the hydrogen atom are given by the following formula:

where
is a constant
n is the level number
We can write therefore the energy difference between adjacent levels as

We see that this difference decreases as the level number (n) increases. For example, the difference between the levels n=1 and n=2 is

While the difference between the levels n=2 and n=3 is

And so on.
So, the energy difference between adjacent levels decreases as the quantum number increases.