Answer:

Explanation:
First, denote our known values;

Mass is impulse divided by change in velocity:

Hence, the mass of the ball is 141.30grams
Answer:
The non-relativistic kinetic energy of a proton is 
The relativistic kinetic energy of a proton is 
Explanation:
Given that,
Mass of proton 
Speed
We need to calculate the kinetic energy for non relativistic
Using formula of kinetic energy

Put the value into the formula


We need to calculate the kinetic energy for relativistic
Using formula of kinetic energy



Hence, The non-relativistic kinetic energy of a proton is 
The relativistic kinetic energy of a proton is 
Check the power source. Your thermostat may just not be connected right or at all. A blown fuse, tripped circuit breaker or dead batteries will prevent the thermostat from turning on your furnace.
Dirty thermostat? That’ll cause issues. Clean up any dust, dirt, spider webs and other debris. Any of these things can coat the inside of the thermostat and interfere with both electrical and mechanical functions of the thermostat. Put this on your get-ready-for-winter cleaning list. Just use a soft, clean brush to clean the inside components gently. Don’t get anything wet. Also you can use a can of compressed air, such as is used for electronics, to clear debris.
Check for any loose wires or terminal screws inside the thermostat. Make sure wires aren’t corroded or detached. Never remove the thermostat cover without removing the batteries or turning off the power at the fuse or breaker box. Tighten screws and secure loose wires if needed.
It may be time to replace your thermostat is it’s old. They aren’t meant to last forever and an old thermostat may be costing you a lot of money in wasted energy and time spent tinkering with an outdated model. There are great programmable thermostats available now that are easy to use and simple to connect to your existing HVAC system. Click here for more info on programmable thermostats.
Answer:
The fractional kinetic energy will be lost if the collision is inelastic. In inelastic collision, the kinetic energy is converted into other forms of energy.
The lost energy became heat and sound energy.
Explanation:
During inelastic collision, the kinetic energy of a moving object does not conserve. It changes into another form of energy such as sound energy and heat energy etc.
For example, when a moving car hit another car or wall etc, the kinetic energy is converted into sound and heat energy. This type of collision is inelastic collision.
In energy point of view, the larger stone had more potential energy before dropping. impacting the water, the larger one, having more kinetic energy which changed from potential energy, tranfered energy to the water and formed wave. the amplitude of the wave indicate the energy of the wave. more energy more amplitude.