The relationship between energy of a single photon and its wavelength can be determined using the formula E=hc/lambda where E is energy, h is Planck's constant, c is the speed of light, and lambda is photons.
Before being able to solve for energy, need to convert nanometers to meters.
407 nm (1 m/1 x 10^9 nm) = 4.07 x 10^-7 m
Then plug in the values we know into the equation.
E h(Planck's constant) c(speed of light)
E = (6.63 x 10^-34 Js)(3 x 10^8 m/s) / 4.07 x 10^-7 m (lambda)
E=(0.000000000000000000000000000000000663js)(300,000,000m/s)=1.989×10^-25j/ms
E=1.989x10^-25j/ms /{divided by} 4.07x10^-7m = 4.8869779x10^-33 J (the meters cancel out)
E = 4.89 x 10^-33 J
This gives us the energy in Joules of a single photon. Now, we can find the number of photons in 0.897 J
0.897J / 4.89 x 10^-33 J = ((0.897 J) / 4.89) x ((10^(-33)) J) = 1.8343558 x 10^-34
1.83435583 × 10-34m4 kg2 / s4 photons
Answer: When a combination reaction occurs between a metal and a non-metal the product is an ionic solid.
Explanation: Another hint(s): When magnesium burns in air, the atoms of the metal combine with the gas oxygen to produce magnesium oxide. This specific combination reaction produces the bright flame generated by flares.
Answer:
Here is your answer: Tin,
Explanation:
Which of the following elements probably has the most properties in common with lead (Pb)? Tin (Sn).
Parsecs and arcseconds is your answer