Answer : The final temperature of the copper is, 
Solution :
Formula used :

where,
Q = heat gained = 299 cal
m = mass of copper = 52 g
c = specific heat of copper =
= final temperature = ?
= initial temperature = 
Now put all the given values in the above formula, we get the final temperature of copper.


Therefore, the final temperature of the copper is, 
Answer:
protons=electrons=9(atomic number)
Neutrons=19-9=10(math number-atomic number)
The pH of the solution of the given acid is 3.099
Let HX be the weak acid:
HX ⇌
+ 
For which:
= [
][
] / [HX]
If
lies in the range
we can assume that the equilibrium concentrations used in the expression are a good enough approximation to the initial concentrations.
Rearranging and taking negative logs of both sides gives:
pH = ![\frac{1}{2} [pK_{a} - loga]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%5BpK_%7Ba%7D%20-%20loga%5D)
a is the concentration of the acid.
= -log (2×
) = 5.69
pH = ![\frac{1}{2} [5.69- (-0.508)]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%5B5.69-%20%28-0.508%29%5D)
pH = 3.099
Learn more about pH of acid here;
brainly.com/question/13043236
#SPJ4
Answer:
This outermost shell is known as the valence shell, and the electrons found in it are called valence electrons.
Explanation:
They are important to an atom because the fewer valence electrons that the atom holds, the less stable it becomes.
Answer: It will decrease.
Explanation:
If you had an equal birth and death rate, the population would theoretically stay the same, but since you have more deaths and less births, the population will decrease.