The answer to this question would be A. Energy is released.
When a chemical bond is a form, the bond will either suck up energy or produce energy. So, to be precise the energy is not always released but also can be absorbed. In this case, the energy released number will be a minus.
Options B and C is definitely wrong since the bond is formed by an electron, it won't affects neutron/proton.
Option D might be true since the product is made of 2 or more atoms then it would seem larger. But the size of the actual atom won't be increased.
Answer:
-1190.24 kJ
Explanation:
The enthalpy change in a chemical reaction that produces or consumes gases is given by the expression:
ΔH = ΔU + Δngas RT
where Δn gas is the change of moles of gas, R is the gas constant,and T is temperature.
Now from the given balanced chemical reaction, the change in number of mol gas is equal to:
Δn gas = mole gas products - mole gas reactants = 2 - 5/2 = -1/2 mol
Sionce we know ΔU and the temperature (298 K), we are in position to calculate the change in enthalpy.
ΔH = -1189 x 10³ J + (-0.5 mol ) 8.314 J/Kmol x 298 K
ΔH = -1.190 x 10⁶ J = -1.190 x 10⁶ J x 1 kJ/1000 J = -1.190 x 10³ J
Answer:
Explanation:
Of course Newton's three laws of motion are correct, because they were verified several hundred of years ago and they continue working today, for such systems. Science is accumulative. What modern physics has done is to constraint the range of validity of those laws.
Newtons first law of motion states that everybody continues in it rest or of uniform motion in a straight line unless an external force is applied on it.
Newtons second law of motion states that acceleration produced on a body by a force is directly proportional to the applied force and inversely proportional to the mass of body.
Newtons third law of motion states that to every action there is equal and opposite reaction.
Hope it will be helpful :)