Answer:
The probability that the child must wait between 6 and 9 minutes on the bus stop on a given morning is 0.148.
Step-by-step explanation:
Let the random variable <em>X</em> represent the time a child spends waiting at for the bus as a school bus stop.
The random variable <em>X</em> is exponentially distributed with mean 7 minutes.
Then the parameter of the distribution is,
.
The probability density function of <em>X</em> is:

Compute the probability that the child must wait between 6 and 9 minutes on the bus stop on a given morning as follows:

![=\int\limits^{9}_{6} {\frac{1}{7}\cdot e^{-\frac{1}{7} \cdot x}} \, dx \\\\=\frac{1}{7}\cdot \int\limits^{9}_{6} {e^{-\frac{1}{7} \cdot x}} \, dx \\\\=[-e^{-\frac{1}{7} \cdot x}]^{9}_{6}\\\\=e^{-\frac{1}{7} \cdot 6}-e^{-\frac{1}{7} \cdot 9}\\\\=0.424373-0.276453\\\\=0.14792\\\\\approx 0.148](https://tex.z-dn.net/?f=%3D%5Cint%5Climits%5E%7B9%7D_%7B6%7D%20%7B%5Cfrac%7B1%7D%7B7%7D%5Ccdot%20e%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%20x%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B7%7D%5Ccdot%20%5Cint%5Climits%5E%7B9%7D_%7B6%7D%20%7Be%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%20x%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C%3D%5B-e%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%20x%7D%5D%5E%7B9%7D_%7B6%7D%5C%5C%5C%5C%3De%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%206%7D-e%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%209%7D%5C%5C%5C%5C%3D0.424373-0.276453%5C%5C%5C%5C%3D0.14792%5C%5C%5C%5C%5Capprox%200.148)
Thus, the probability that the child must wait between 6 and 9 minutes on the bus stop on a given morning is 0.148.
Answer:
(x - 12)²/9
Step-by-step explanation:
y = 3sqr(x) + 12
Make x the subject:
y - 12 = 3sqrt(x)
(y - 12)/3 = sqrt(x)
Square both sides
(y - 12)²/9 = x
Interswitch variables
inverse function is:
(x - 12)²/9
If f(x) = (x + 12)^⅓
Then,
y = (x + 12)⅓
y³ = x + 12
y³ - 12 = x
f inverse:
x³ - 12
Answer:
Step-by-step explanation:
I'm going to assume that the problem is -23x -214 = 274
And in that case...
1. First isolate the x-value by adding 214 to both sides of the equation:
-23x = 488
2. Then, divide both sides by -23 to truly get x alone:
x =
or -21.22
The complete question in the attached figure
we know that
the diagonals of a rhombus intersect to form right angles,
so
angle ACE is ----------> (90°-64°)-----------> 26°
ACE is the angle bisector of ACD, this means that ACD is ---------> 26 x 2 = 52°
The diagonals are angle bisectors to the opposite corners
so
ACD = ACB = 52°
and
BCD = 52 x 2 = 104°
For a rhombus, opposite angles are equivalent,
so
BAD = BCD = 104°
the answer is
angle BAD=104°
Answer: so dog goes to cat, dog goes to rabbit and cat goes to rabbit I think
Step-by-step explanation: