There are some standard numbers that help us describe the structure of an atom and help us categorize them. Those are the atomic number, the mass number and the numbers of electrons in an atom (or ion). Atoms are electrically neutral, hence they have the same number of protons as electrons. If an atom has a charge and has thus become an ion, it is because electrons joined it or left. For example in this case, since the ion has +2 charge, 2 electrons left it and thus the ion has 4 electrons (2 electrons less than its protons). The mass number is the sum of the protons and neutrons of an atom (that are in the nucleus). In this case, this yields a mass number of 13 for this ion. The atomic number of an atom (or ion) is the total number of protons in the nucleus. Protons do not leave the nucleus except for radioactive reactions and thus the atomic number of an atom (or ion) does not change in chemical reactions. In this case, the ion has an atomic number of 6.
Answer:
1.37 × 10²³ Atoms of Mercury
Solution:
Step 1: Calculate Mass of Mercury using following formula,
Density = Mass ÷ Volume
Solving for Mass,
Mass = Density × Volume
Putting values,
Mass = 13.55 g.cm⁻³ × 3.4 cm³ ∴ 1 cm³ = 1 cc
Mass = 46.07 g
Step 2: Calculating number of Moles using following formula;
Moles = Mass ÷ M.mass
Putting values,
Moles = 46.07 g ÷ 200.59 g.mol⁻¹
Moles = 0.229 mol
Step 3: Calculating Number of Atoms using following formula;
Number of atoms = Moles × 6.022 ×10²³
Putting value of moles,
Number of Atoms = 0.229 mol × 6.022 × 10²³
Number of Atoms = 1.37 × 10²³ Atoms of Hg
Answer:
8.0 moles
Explanation:
Since the acid is monoprotic, 1 mole of the acid will be required to stochiometrically react with 1 mole of NaOH.
Using the formula: 
Concentration of acid = ?
Volume of acid = 10 mL
Concentration of base = 1.0 M
Volume of base = 40 mL
mole of acid = 1
mole of base = 1
Substitute into the equation:

Concentration of acid = 40/10 = 4.0 M
To determine the number of moles of acid present in 2.0 liters of the unknown solution:
Number of moles = Molarity x volume
molarity = 4.0 M
Volume = 2.0 Liters
Hence,
Number of moles = 4.0 x 2.0 = 8 moles
CaBr₃ = 40 + 80 * 3 = 280 g/mol
hope this helps!
The answer is D.
"Orange light reflected from the T-shirt enters human eyes."