we know there are 180° in π radians, how many degrees then in -3π/10 radians?
![\bf \begin{array}{ccll} degrees&radians\\ \cline{1-2} 180&\pi \\\\ x&-\frac{3\pi }{10} \end{array}\implies \cfrac{180}{x}=\cfrac{\pi }{~~-\frac{3\pi }{10}~~}\implies \cfrac{180}{x}=\cfrac{\frac{\pi}{1} }{~~-\frac{3\pi }{10}~~} \\\\\\ \cfrac{180}{x}=\cfrac{\pi }{1}\cdot \cfrac{10}{-3\pi }\implies \cfrac{180}{x}=-\cfrac{10}{3}\implies 540=-10x\implies \cfrac{540}{-10}=x \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill -54=x~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Bccll%7D%20degrees%26radians%5C%5C%20%5Ccline%7B1-2%7D%20180%26%5Cpi%20%5C%5C%5C%5C%20x%26-%5Cfrac%7B3%5Cpi%20%7D%7B10%7D%20%5Cend%7Barray%7D%5Cimplies%20%5Ccfrac%7B180%7D%7Bx%7D%3D%5Ccfrac%7B%5Cpi%20%7D%7B~~-%5Cfrac%7B3%5Cpi%20%7D%7B10%7D~~%7D%5Cimplies%20%5Ccfrac%7B180%7D%7Bx%7D%3D%5Ccfrac%7B%5Cfrac%7B%5Cpi%7D%7B1%7D%20%7D%7B~~-%5Cfrac%7B3%5Cpi%20%7D%7B10%7D~~%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B180%7D%7Bx%7D%3D%5Ccfrac%7B%5Cpi%20%7D%7B1%7D%5Ccdot%20%5Ccfrac%7B10%7D%7B-3%5Cpi%20%7D%5Cimplies%20%5Ccfrac%7B180%7D%7Bx%7D%3D-%5Ccfrac%7B10%7D%7B3%7D%5Cimplies%20540%3D-10x%5Cimplies%20%5Ccfrac%7B540%7D%7B-10%7D%3Dx%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20-54%3Dx~%5Chfill)
Answer: The difference cannot be found because the indices of the radicals are not the same.
Step-by-step explanation:
To find the difference you need to subtract the radicals. But it is important ot remember the following: To make the subtraction of radicals, the indices and the radicand must be the same.
In this case you have these radicals:
![\sqrt[ {8ab}^{3} ]{{ac}^{2} }- \sqrt[ {14ab}^{3}]{{ac}^{2} }](https://tex.z-dn.net/?f=%5Csqrt%5B%20%7B8ab%7D%5E%7B3%7D%20%5D%7B%7Bac%7D%5E%7B2%7D%20%7D-%20%5Csqrt%5B%20%7B14ab%7D%5E%7B3%7D%5D%7B%7Bac%7D%5E%7B2%7D%20%7D)
You can observe that the radicands are the same, but their indices are not the same.
Therefore, since the indices are different you cannot subtract these radicals.
Answer: 2/1
Step-by-step explanation:
24 divided by 12 equals: 2/1
Question not well presented and diagram is missing
Quadrilateral WILD is inscribed in circle O.
WI is a diameter of circle O.
What is the measure of angle D?
See attached for diagram
Answer:
Step-by-step explanation:
Summation of opposite angles of a quadrilateral inscribed in a circle is 180°, given that the vertices are on the circle.
Given
<WIL = 45°
<ILD = 109°
In the attached;
<WIL + <WDL = 180° (Opposite angle of quadrilateral)
Substitute 45° for <WIL in the above expression
45° + <WDL = 180° ---- Collect like terms
<WDL = 180° - 45°
<WDL = 135°
Hence, the measure of angle D is 135° (See attached)