The solubility of gas in water is inversely proportional to the temperature. That means cool waters can hold more gases than hot waters. So when the oceans continue to warm all the green--houses gases present in oceanic waters will be released into to the atmosphere. This would further lead to the heating up of the planet. The global climate would keep changing and the temperature of the planet would increase further. Therefore, when the oceans continue to warm the amount of green-house gases cannot be sequestered by the oceans (as the temperatures are high) and so this would further enhance the greenhouse effect.
Explanation:
The bond between C and O in CO₂ and O and H in H₂O
Therefore,
Option C is correct✔
<span>I’ve answered this
question before so if these are the choices to the question presented:
An oxygen atom double-bonded to a carbon atom, with a hydrogen atom
single-bonded to the same carbon atom. </span><span>
<span>A hydrogen atom covalently bonded to an oxygen atom, which is
covalently bonded to a carbon in the carbon chain. </span>
<span>A carbon atom single-bonded between two other carbon atoms,
with an oxygen atom double-bonded to the central carbon atom as well. </span>
<span>An oxygen atom single-bonded between two carbon atoms within
a carbon chain.
Then, the answer would be “a hydrogen atom covalently bonded to an oxygen atom,
which is covalently bonded to a carbon in the carbon chain.<span>”</span></span></span>
<u>Solar Energy & Wind Power.</u>
One of the main thing about renewable energy, it will never run out, and it saves you money.