Here, Just apply Distributive property which tells, a(b + c) = ab + bc
So, -6(-7 - 3k) = 42 + 18k
In short, Your Answer would be 42 +18k
Hope this helps!
<em>The</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>p</em><em> </em><em>is</em><em> </em><em>1</em><em> </em><em>3</em><em>/</em><em>4</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
Cut out 18%
100=all,
all-cut out=remaining
100-18=82
4hrs 20mins=240+20mins=260mins
82% of 260 is 0.82*20=213.2=3 hours and 33.2 minutes
he can runi s 3 hours and 33.2 minutes
Let the number of type A surfboards to be ordered be x and the number of type B surfboards be y, then we have
Minimize: C = 272x + 136y
subject to: 29x + 17y ≥ 1210
x + y ≤ 50
x, y ≥ 1
From the graph of the constraints, we have that the corner points are:
(20, 30), (41.138, 1) and (49, 1)
Applying the corner poits to the objective function, we have
For (20, 30): C = 272(20) + 136(30) = 5440 + 4080 = $9,520
For (41.138, 1): C = 272(41.138) + 136 = 11189.54 + 136 = $11,325.54
For (49, 1): C = 272(49) + 136 = 13328 + 136 = $13,464
Therefore, for minimum cost, 20 type A surfboards and 30 type B surfboards should be ordered.
Answer:
range is 9
Step-by-step explanation: