1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alekssr [168]
3 years ago
15

Find the quotient -88, 11

Mathematics
2 answers:
Cerrena [4.2K]3 years ago
5 0
Quotient means the answer to division right? So it would be -8.
irinina [24]3 years ago
4 0
The answer is -88/11=-8
You might be interested in
Im begging someone help me please
Tems11 [23]

Answer:

c. a: 4

b: 12

c: 9

4x² +12x+9=0

(2x+3)(2x+3)= 0

(2x+3)²=0 {square root both sides}

2x+3=0

2x=-3

x= -3/2

7 0
3 years ago
Find two numbers whose difference is 154 and whose product is a minimum.
Serggg [28]
Y - x = 154
let z = xy = x(154 + x) = x^2 + 154x

we need to find the minimum value of z

z' =   2x + 154  which = zero for minm or maxm value

x = -77   and y = 154 -77 = 77

so the 2 numbers are -77 and 77




7 0
3 years ago
Can you answer these please many thanks
givi [52]

Given: (a) 2(x+3)=2x+6 and (b) 4(y-3)=4y-12.

To find: The expanded form of the given expressions.

(c) 4(m+n)=4m+4n       (using a(b+c)=ab+ac)

(d) 3(5-q)=15-3q           (using a(b-c)=ab-ac)

(e) 5(2c+1)=10c+5          (using a(b+c)=ab+ac)

(f) 3(2x-5)=6x-15          (using a(b-c)=ab-ac)

(g) 7(4b-1)=28b-7          (using a(b-c)=ab-ac)

(h) 3(2x+y-5)=3((2x+y)-5)

⇒3(2x+y-5)=3(2x+y)-15         (using a(b-c)=ab-ac)

⇒3(2x+y-5)=6x+3y-15            (using a(b+c)=ab+ac)

(i) 2(6a-4b+3)=2((6a-4b)+3)

⇒2(6a-4b+3)=2(6a-4b)+6         (using a(b+c)=ab+ac)

⇒2(6a-4b+3)=12a-8b+6            (using a(b-c)=ab-ac)

(j)6(m+n+p)=6((m+n)+p)

⇒ 6(m+n+p)=6(m+n)+6p           (using a(b+c)=ab+ac)

⇒ 6(m+n+p)=6m+6n+6p            (using a(b+c)=ab+ac)

(k) y(y+2)=y^2+2y          (using a(b+c)=ab+ac)

(l) g(g-3)=g^2-3g           (using a(b-c)=ab-ac)

(m) n(4-n)=4n-n^2        (using a(b-c)=ab-ac)

(n) a(b+c)=ab+ac           (using a(b+c)=ab+ac)

(o) s(3s-4)=3s^2-4s        (using a(b-c)=ab-ac)

(p) 2x(x+5)=2x^2+10x     (using a(b+c)=ab+ac)

(q) 4y(x-3)=4xy-12y      (using a(b-c)=ab-ac)

(r) 5a(2b-5)=10ab-25a     (using a(b-c)=ab-ac)

(s) 4a(3b+2c)=12ab+8ac    (using a(b+c)=ab+ac)

(t) 5p(4p-5q)=20p^2-25pq    (using a(b-c)=ab-ac)

6 0
3 years ago
David rolls a die and spins the spinner.
CaHeK987 [17]

A. 1/5

A.

14

15

are the right i think

6 0
3 years ago
A cone and a cylinder have the same height and their bases are congruent circles
Anettt [7]

Answer:

30cm^3

Step-by-step explanation:

the volume of a cylinder is given by:

v_{cylinder}=\pi r^2 h

and the volume of a cone is given by:

v_{cone}=\frac{\pi r^2 h}{3}

since both have the same height and radius, we can solve each equation for r^2h (because this quantity is the same in both figures) and then match the expressions we find:

from the cylinder's volume formula:

r^2h=\frac{v_{cylinder}}{\pi}

and from the cone's volume formula:

r^2h=\frac{3 v_{cone}}{\pi}

matching the two previous expressions:

\frac{v_{cylinder}}{\pi} =\frac{3v_{cone}}{\pi}

we solve for the volume of a cone v_{cone}:

v_{cone}=\frac{\pi v_{cylinder}}{3\pi} \\\\v_{cone}=\frac{v_{cylinder}}{3}

substituting the value of the cylinder's volume v_{cylinder}=90cm^3

v_{cone}=\frac{90cm^3}{3} \\\\v_{cone}=30cm^3

5 0
3 years ago
Read 2 more answers
Other questions:
  • Harry asked a sample of 4 people how many siblings they had. Here are their responses:
    12·1 answer
  • Which equation is written in slope-intercept form?
    13·1 answer
  • Find the product. -8 [7,-4,0][-3,0,5][6,2,1]
    11·1 answer
  • Is 95/72 closer to 0, 1, 2 or 3
    12·2 answers
  • What is f(5)? I need help someone plz :)
    8·1 answer
  • PLEASE HELP! Select all the correct answers.
    5·1 answer
  • two airplanes leave an airport at the same time and travel in opposite directions. one plane travels 70km/h slower than the othe
    6·1 answer
  • Subtract (7x-2) - (3x-5)
    8·2 answers
  • Consider the angle shown below that has a radian measure of θ. A circle with a radius of 3.2 cm is centered at the angle's verte
    11·1 answer
  • System by elimination <br><br>2x - y = -3 <br>-2x - 8y = 12​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!