The value of x in the equation (43/7 ÷ x + 32/9) ÷ 25/6 = 4/3 is 43/14
<h3>How to solve for x in the equation?</h3>
The equation is given as:
(43/7 ÷ x + 32/9) ÷ 25/6 = 4/3
Rewrite as a product
(43/7 ÷ x + 32/9) x 6/25 = 4/3
Multiply both sides of the equation by 25/6
(43/7 ÷ x + 32/9)= 4/3 x 25/6
Evaluate the product
(43/7 ÷ x + 32/9)= 50/9
Rewrite the equation as:
43/7x + 32/9= 50/9
Subtract 32/9 from both sides
43/7x = 2
Multiply both sides by 7x
14x = 43
Divide by 14
x =43/14
Hence, the value of x in the equation (43/7 ÷ x + 32/9) ÷ 25/6 = 4/3 is 43/14
Read more about equations at:
brainly.com/question/2972832
#SPJ1
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Integrals
- Definite Integrals
- Area under the curve
- Integration Constant C
Integration Rule [Reverse Power Rule]:
Integration Rule [Fundamental Theorem of Calculus 1]:
Integration Property [Multiplied Constant]:
Integration Property [Addition/Subtraction]:
Area of a Region Formula: ![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Bf%28x%29%20-%20g%28x%29%5D%7D%20%5C%2C%20dx)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
f(x) = 6x + 19
Interval [12, 15]
<u>Step 2: Find Area</u>
- Substitute in variables [Area of a Region Formula]:

- [Integral] Rewrite [Integration Property - Addition/Subtraction]:

- [Integrals] Rewrite [Integration Property - Multiplied Constant]:

- [Integrals] Integrate [Integration Rule - Reverse Power Rule]:

- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e
Answer:
221,000,000,000,000,000,000 = 2.21 x 10^20
therefore, the answer is b
Step-by-step explanation: