To solve this problem it is necessary to apply the concepts related to the conservation of the Gravitational Force and the centripetal force by equilibrium,


Where,
m = Mass of spacecraft
M = Mass of Earth
r = Radius (Orbit)
G = Gravitational Universal Music
v = Velocity
Re-arrange to find the velocity



PART A ) The radius of the spacecraft's orbit is 2 times the radius of the earth, that is, considering the center of the earth, the spacecraft is 3 times at that distance. Replacing then,


From the speed it is possible to use find the formula, so



Therefore the orbital period of the spacecraft is 2 hours and 24 minutes.
PART B) To find the kinetic energy we simply apply the definition of kinetic energy on the ship, which is



Therefore the kinetic energy of the Spacecraft is 1.04 Gigajules.
Answer:
Because of the speed of the sound.
Explanation:
The first thing that happens in such cases is to take into account the speed of the sound. First, we see that the player hits the ball with the bat, if we are in the stands far enough we will hear the sound of the batting time later, this time depends on the speed of the sound which is equal to 345 [m/s].
Another visible and practical example is a fireworks display, where people nearby immediately hear the explosion. while those at a great distance will be able to see first the explosion followed by the sound.
With the following equation, we can calculate how long it takes to hear a hit or explosion
t = x / v
where:
x = distance [m]
v = sound velocity = 345 [m/s]
t = time [s]
It is a stretch of the atmosphere ranging from the upper mesosphere to the lower parts of the thermosphere. It’s useful to us in radio communication.
Answer:
For vector u, x component = 10.558 and y component =12.808
unit vector = 0.636 i+ 0.7716 j
For vector v, x component = 23.6316 and y component = -6.464
unit vector = 0.9645 i-0.2638 j
Explanation:
Let the vector u has magnitude 16.6
u makes an angle of 50.5° from x axis
So 
Vertical component 
So vector u will be u = 10.558 i+12.808 j
Unit vector 
Now in second case let vector v has a magnitude of 24.5
Making an angle with -15.3° from x axis
So horizontal component 
Vertical component 
So vector v will be 23.6316 i - 6.464 j
Unit vector of v 
Answer: B. If an object's velocity is changing,it's either experiencing acceleration or deceleration.
Acceleration is defined as the rate at which an object changes its velocity. This implies that if an object is changing it's velocity it is experiencing acceleration/ deceleration.
Acceleration is a vector quantity that has both a magnitude and time.
It is represented as
Acceleration= change in velocity/time.
The SI unit for acceleration is m/s^2