To solve the problem you must first know that by keeping the linear moment P1 = P2. You must find P1 from the system and equal it to P2 of the system, from that equation you clear the final velocity 1. Which will result in V1f = 60.16 cm / s to the north.I attach the solution.
Answer:
nice!!! but did you know that geico can save you 15% or more on car insurance!
Explanation:
Answer:

Explanation:
The capacitor of a parallel-plate capacitor is given by:

where
A is the area of each plate
d is the separation between the plates
is the vacuum permittivity
The energy stored in a capacitor instead is given by

where
Q is the charge stored in each plate
Substituting the expression we found for C inside the last formula,

And re-arranging it

Now if we substitute

We find the charge stored on the capacitor:

Answer:
t = 5.48 × 10⁻³ s
Explanation:
Given:
ΔV = ΔVmax × sin(2πft)
frequency, f = 16.9Hz
thus,
ΔV = ΔVmax × sin(2π×16.9×ft)
Now,
Let 'R' be the resistance
Also according to the ohms law
i = V/R
where,
i = current
V = voltage
hence,

also, given at time 't' the current in the circuit is 55.0% of the peak current
thus

thus,
or
or
or
t = 5.48 × 10⁻³ s (Answer)