1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xz_007 [3.2K]
3 years ago
5

When a pendulum with a period of 2.00000 s is moved to a new location from one where the acceleration due to gravity was 9.80 m/

s2, its new period becomes 1.99824 s. By how much does the acceleration due to gravity differ at its new location? How is the period of the pendulum related to the length of the pendulum and the acceleration due to gravity at the location of the pendulum? What happens to the length of the pendulum as it is moved to the new location?
Physics
1 answer:
Fynjy0 [20]3 years ago
8 0

1. By 0.02 m/s^2

The period of a pendulum is given by:

T=2 \pi \sqrt{\frac{L}{g}}

where

L is the length of the pendulum

g is the gravitational acceleration

Initially, we know:

T = 2.00000 s is the period of the pendulum

g = 9.80 m/s^2 is the acceleration due to gravity at the original location

We can solve the equation for L in order to find the length of the pendulum:

L=\frac{T^2}{(2 \pi)^2}g=\frac{(2.0000 s)^2}{(2 \pi)^2}(9.80 m/s^2)=0.99396 m

The length of the pendulum does not change when it is moved to the new location, so we can use the same equation with T=1.99824 s (the new period) and solving it for g to find the acceleration due to gravity at the new location:

g=L\frac{(2 \pi)^2}{T^2}=(0.99396 m)\frac{(2 \pi)^2}{(1.99824 s)^2})=9.82 m/s^2

So, the change in gravitational acceleration is

\Delta g = g_2 - g_1 = 9.82 m/s^2-9.80 m/s^2 = 0.02 m/s^2

2) the period of the pendulum is directly proportional to the square root of the length, L, and inversely proportional to the square root of the gravitational acceleration, g.

The period of a pendulum is given by:

T=2 \pi \sqrt{\frac{L}{g}}

where

L is the length of the pendulum

g is the gravitational acceleration

So, we see that the period of the pendulum is directly proportional to the square root of the length, L, and inversely proportional to the square root of the gravitational acceleration, g.

3) The length of the pendulum does not change

The length of the pendulum does not depend on the location: in fact, only the value of the gravitational acceleration, g, depends on the location, therefore the length of the pendulum, L, does not change.

You might be interested in
A ball is thrown upward with a speed of 40 m/s. Approximately how much time does it take the ball to travel from the release loc
zvonat [6]

I'm going to assume that this gripping drama takes place on planet Earth, where the acceleration of gravity is 9.8 m/s².  The solutions would be completely different if the same scenario were to play out in other places.

A ball is thrown upward with a speed of 40 m/s.  Gravity decreases its upward speed (increases its downward speed) by 9.8 m/s every second.

So, the ball reaches its highest point after (40 m/s)/(9.8 m/s²) = <em>4.08 seconds</em>. At that point, it runs out of upward gas, and begins falling.

Just like so many other aspects of life, the downward fall is an exact "mirror image" of the upward trip.  After another 4.08 seconds, the ball has returned to the height of the hand which flung it.  In total, the ball is in the air for <em>8.16 seconds</em> up and down.

4 0
3 years ago
A 65.8-kg person throws a 0.0413 kg snowball forward with a ground speed of 32.5 m/s. A second person, with a mass of 58.7 kg, c
guapka [62]

Answer:

v_{1} = 2.490\,\frac{m}{s}

v_{2} = 0.023\,\frac{m}{s}

Explanation:

The statement is described physically by means of the Principle of Momentum Conservation. Let assume that first person moves in the positive direction:

First Person

(65.8\,kg)\cdot (2.51\,\frac{m}{s}) = (65.8\,kg)\cdot v_{1} + (0.0413\,kg)\cdot (32.5\,\frac{m}{s} )

Second Person

(0.0413\,kg)\cdot (32.5\,\frac{m}{s})+(58.7\,kg)\cdot (0\,\frac{m}{s})=(0.0413\,kg+58.7\,kg)\cdot v_{2}

The final velocities of the two people after the snowball is exchanged is:

v_{1} = 2.490\,\frac{m}{s}

v_{2} = 0.023\,\frac{m}{s}

6 0
3 years ago
A duck with a mass of 0.90 kilograms flies at a rate of 12.0 m/s. What is the kinetic energy of the duck?
bija089 [108]
It should be at about 65J. Not sure, hope I helped.
6 0
3 years ago
Read 2 more answers
A real power supply can be modeled as an ideal EMF of 60 Volts in series with an internal resistance. The voltage across the ter
lara31 [8.8K]

Answer:

5 ohms

Explanation:

Given:

EMF of the ideal battery (E) = 60 V

Voltage across the terminals of the battery (V) = 40 V

Current across the terminals (I) = 4 A

Let the internal resistance be 'r'.

Now, we know that, the voltage drop in the battery is given as:

V_d=Ir

Therefore, the voltage across the terminals of the battery is given as:

V= E-V_d\\\\V=E-Ir

Now, rewriting in terms of 'r', we get:

Ir=E-V\\\\r=\frac{E-V}{I}

Plug in the given values and solve for 'r'. This gives,

r=\frac{60-40}{4}\\\\r=\frac{20}{4}\\\\r=5\ ohms

Therefore, the internal resistance of the battery is 5 ohms.

5 0
3 years ago
If the temperature of a gas is increased by 10x, what will happen to the volume?
xxMikexx [17]

The volume of a gas will increase by ten times if the temperature is increased by ten times.

<h3>Relationship between the volume of a gas and temperature</h3>

The relationship between the volume of a gas and its temperature is explained in Charles' law of gases which states that:

  • The volume of a fixed mass of gas is directly proportional to its temperature provided the pressure of the gas is kept constant.

This means that if the temperature of a gas is increased by any given factor, the volume increases by the same factor proportionally.

Therefore, if the volume of a gas will increase by ten times if the temperature is increased by ten times.

Learn more about gas volume and temperature at: brainly.com/question/18706379

8 0
2 years ago
Other questions:
  • Why does a round pizza come in a square box? Random questions
    5·2 answers
  • Early black-and-white television sets used an electron beam to draw a picture on the screen. The electrons in the beam were acce
    14·1 answer
  • For hundreds of years humans have been adding chemicals and other pollutants to the earths water supply. Can earths water ever b
    11·1 answer
  • A 60.7 kg astronaut is floating in space. She takes her 3.1 kg astronaut drill from her toolbelt and throws it to the right. It
    13·1 answer
  • Write the formulas of three important acids and three important bases. Describe their uses.
    14·1 answer
  • A scientist asked a question that was based on an observation. Which is the next step the scientist should take?
    14·1 answer
  • If two automobiles have the same velocity do they have the same acceleration?
    10·2 answers
  • 4.
    6·1 answer
  • A liquid has a specific gravity of 1.1 at room temperature. What is its (a) Density at room temperature in kg/m3 (b) Specific vo
    6·1 answer
  • A 50-kg copper block initially at 140°c is dropped into an insulated tank that contains 90 l of water at 10°c. Determine the f
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!