Answer:
n = 756.25 giga electrons
Explanation:
It is given that,
If the charge on the negative plate of the capacitor, 
Let n is the number of excess electrons are on that plate. Using the quantization of charges, the total charge on the negative plate is given by :

e is the charge on electron

or
n = 756.25 giga electrons
So, there are 756.25 giga electrons are on the plate. Hence, this is the required solution.
<h3>
Answer:</h3>
117.6 Joules
<h3>
Explanation:</h3>
<u>We are given;</u>
- Force of the dog is 24 N
- Distance upward is 4.9 m
We are required to calculate the work done
- Work done is the product of force and distance
- That is; Work done = Force × distance
- It is measured in Joules.
In this case;
Force applied is equivalent to the weight of the dog.
Work done = 24 N × 4.9 m
= 117.6 Joules
Hence, the work done in lifting the dog is 117.6 Joules
Explanation:
Distance covered by the satellite in 24 hours
s=2πr
=2×3.14×42250=265464.58 km
Therefore speed of satellite,
v=
time taken
distance travelled
=
24×60×60
265464.58
=3.07 km s
−1
The correct answer is granite oceanic. Continental crust is primarily a granite oceanic. Continental crust is the layers of sedimentary, igneous, and metamorphic rocks that form the area of the shallow seabed that is near the shore.
Answer:
is the initial velocity of tossing the apple.
the apple should be tossed after 
Explanation:
Given:
- velocity of arrow in projectile,

- angle of projectile from the horizontal,

- distance of the point of tossing up of an apple,

<u>Now the horizontal component of velocity:</u>



<u>The vertical component of the velocity:</u>



<u>Time taken by the projectile to travel the distance of 30 m:</u>



<u>Vertical position of the projectile at this time:</u>



<u>Now this height should be the maximum height of the tossed apple where its velocity becomes zero.</u>


is the initial velocity of tossing the apple.
<u>Time taken to reach this height:</u>



<u>We observe that </u>
<u> hence the time after the launch of the projectile after which the apple should be tossed is:</u>


