The tip of the fan moves through the outer side of the circle.
So it moves a distance of perimeter of circle in one revolution.
Perimeter of circle = 2
r, where r is the radius of circle.
In this case radius of circular motion = 0.19 meter
So perimeter of circle = 2
*0.19 = 0.38
= 1.194 m
So distance does the tip move in one revolution = 1.194 meter
The answer is kilometers.
Answer:
<em>Element C will be best for a nuclear fission reaction</em>
Explanation:
<em>Nuclear fission is the splitting of the nucleus of a heavy atom by bombarding it with a nuclear particle. The reaction leads to the the atom splitting into two smaller elements and a huge amount of energy is liberated in the process.</em> For the reaction to be continuous in a chain reaction,<em> the best choice of element to use as fuel for the reaction should be the element whose nucleus also liberates a neutron particle after fission</em>. The neutron that is given off by other atoms in the reaction will then proceed to bombard other atoms of the element in the reaction, creating a cascade of fission and bombardment within the nuclear reactor.
To solve this problem we will apply the definition of the ideal gas equation, where we will clear the density variable. In turn, the specific volume is the inverse of the density, so once the first term has been completed, we will simply proceed to divide it by 1. According to the definition of 1 atmosphere, this is equivalent in the English system to

The ideal gas equation said us that,
PV = nRT
Here,
P = pressure
V = Volume
R = Gas ideal constant
T = Temperature
n = Amount of substance (at this case the mass)
Then

The amount of substance per volume is the density, then

Replacing with our values,


Finally the specific volume would be

