Answer:
The 99% confidence interval for the mean peak power after training is [299.4, 330.6]

Step-by-step explanation:
We have to construct a 99% confidence interval for the mean.
A sample of n=7 males is taken. We know the sample mean = 315 watts and the sample standard deviation = 16 watts.
For a 99% confidence interval, the value of z is z=2.58.
We can calculate the confidence interval as:

The 99% confidence interval for the mean peak power after training is [299.4, 330.6]
Answer:
5.25 miles
Step-by-step explanation:
15 min=1/4 of hour
12/4=3
9/4=2.25
3+2.25=5.25
Answer:
1.a
2.b
Step-by-step explanation:
The first column is the domain, while the second column is the range. Therefore, 1 is a, and 2 is b. Hope this helps!
Both are related because u can multiply the answer to find a devision problem and you can divide a answer to find ur multiplication problem and find ur answer hope this helps
Answer:
y = (3/4)x + 2
Step-by-step explanation:
Slope-intercept form is y=mx+b where (x, y) is a point on the linear graph, m is the slope (rise/run), and b is the y-intercept (the y-value at which the graph passes through the y-axis).
Looking at the graph, we can see that the point at which the line crosses the y-axis is (0, 2) which makes it the y-intercept. Thus, the b in the slope-intercept form is 2.
Next, we are looking for the slope of the line. To do this, we can calculate the rise/run of the line by choosing to points on it. Since we already have the point (0, 2), we just need one more.
For example, the point (-4, -1) can be used. The slope can be found by ((y-y)/(x-x)) in which the first y and x values correspond with the first point and that of the second correspond with the second set. So in this case, m = (2-(-1))/(0-(-4)) = 3/4
Plugging in the calculated m and b value in the slope intercept equation, we get y = (3/4)x + 2