Well, basically when it says that the strand of mRNA is the opposite to DNA it means that the nitrogenous bases of DNA complement or follow base pairing rules to form the strand of mRNA.
In mRNA
A - U
G - C
T - thymine is absent and is replaced with U - uracil in mRNA.
The thymine bases in DNA are base paired with A - adenine in the mRNA strand.
So the mRNA strand would be the following :
AUGUGGGCUACGCGAGCUUCAUACGAUCUAGCUACGCAGUGGCAGCAGGCAUCACAUCGAUCGCAUUAG.
So, now that we know that this is the mRNA strand, and assuming that the top or the first part is the 5' region and the final end of the mRNA is the 3' region
Group three 3 nucleotides together in the mRNA strand and find the amino acid that the first 3 would represent in this case AUG would represent the start codon or methionine in this case it would be the start, the next would be UGG, etc, do this until you reach the final set of 3 nucleotides and the final product would be a protein consisting of whatever other amino acids were represented by the codon or 1 set of 3 nucleotides on the mRNA strand.
Plants get their energy from the sun using Photosynthesis and animals get it from eating food.
In hemoglobin, the transition from t state to r state (low to high affinity) is triggered by Bisphosphoglycerate (BPG)
- Bisphosphoglycerate (BPG), also known as 2,3-Disphosphoglycerate (2,3-DPG), aids in the transition of hemoglobin from a high-oxygen-affinity to a low-oxygen-affinity state.
- 2,3-BPG binds to hemoglobin, causing oxygen to be unloaded. Furthermore, 2,3-BPG reduces hemoglobin's affinity for oxygen. As hemoglobin is unloaded in our tissues, 2,3-BPG binds to it, promoting oxygen unloading.
- When we increase the concentration of 2,3-BPG in our blood, the oxygen binding curve shifts to the right. This means hemoglobin will have a lower affinity for oxygen and will be able to deliver more oxygen to our body's tissues and cells.
Learn more about Bisphosphoglycerate (BPG) from here:brainly.com/question/8885734
#SPJ4
Dissolved Oxygen and Water Temperature. The solubility of oxygen and other gases will decrease as temperature increases 9. This means that colder lakes and streams can hold more dissolved oxygen than warmer waters. If water is too warm, it will not hold enough oxygen for aquatic organisms to survive.
Which Characteristic of life best describes the process of homostasis