The basics would be that you'd need to find out if they could exchange genetic information. If not, they couldn't be considered part of one species. Set-up 2 artificial environments so both groups would produce pollen at the same time. Fertilise both plants with the other's pollen. Then fertilise the plants with pollen from their own group.
Count the number of offspring each plant produces.
If the plants which were fertilised by the opposite group produce offspring, they are of the same species. You can then take this further if they are of the same species by analysing if there is any difference between the number (and health) of offspring produced by the crossed progeny and by the pure progeny. You'd have to take into account that some of them would want to grow at different times, so a study of the progeny from their first sprout until death (whilst emulating the seasons in your ideal controlled environment). Their success could then be compared to that of the pure-bred individuals.
Make sure to repeat this a few times, or have a number of plants to make sure your results are accurate.
Or if you couldn't do the controlled environment thing, just keep some pollen one year and use it to fertilise the other group.
I'd also put a hypothesis in there somewhere too.
The independent variable would be the number of plants pollinated. The dependant variable would be the number of progeny (offspring) produced.
Respiration is process where plant produce heat
Explanation:
Respiration is essential component for every living thing this. Respiration help living thing get energy and stay alive. In plant cellular respiration is used to convert nutrient which is present in soil and this process can be understand as a cellular activity. In plants seeds play vital role.
The basic difference between respiration and photosynthesis is in respiration plant consume nutrient for survival and alive plant cell but in photosynthesis plant is able to make their own food. In respiration only plant produce heat energy
<u>The formula of Respiration:
</u>
Oxygen + glucose – Carbon dioxide + water + heat energy
<u>The formula of Photosynthesis
</u>
Carbon dioxide + Water + Sunlight – Oxygen + glucose
B. Mesopela: the transmissive barrier through which two cell layers interact in the structure of the coral body