a/b * b/c * c/d * d/e is equal to a/e provided that b, c, d,
and e are not zero
PROVE
a/b * b/c * c/d * d/e
= (a/b *b/c) * (c/d * d/e)
= ab/bc * (c/d * d/e)
= a/c * (c/d * d/e)
= a/c * (cd/de)
= a/c * c/e
= ac/ce
= a/e
Therefore, a/b * b/c * c/d * d/e is equal to a/e provided that
b, c, d, and e are not zero
Answer:
it is b
Step-by-step explanation:
Answer: 2.5%
Step-by-step explanation:
Mean score = 65
Standard deviation = 5
Score (x) = >75
Z-score = [(score - mean) ÷ standard deviation]
Z - score = [(75 - 65) ÷ 5]
Z - score = 10 ÷ 5 = 2
P(score higher than 75) = 100 - 95 = 5/2 = 2.5%
(x-2)squared +y squared=20
<em>a = 17</em>
<em>b = 18</em>
<em>c = 19</em>
- <em>Step-by-step explanation:</em>
<em>Hi there ! </em>
<em>a + b + c = 54</em>
<em>b = a + 1</em>
<em>c = a + 2</em>
<em>replace b ; c</em>
<em>a + (a + 1) + (a + 2) = 54</em>
<em>3a = 54 - 3</em>
<em>3a = 51</em>
<em>a = 51 : 3</em>
<em>a = 17</em>
<em>b = 18</em>
<em>c = 19</em>
<em>Good luck !</em>